网站入侵

入侵网站,破解服务,入侵服务,渗透测试,网络安全

XSS计划验证航天器的简单介绍

本文导读目录:

航天器如何对接的?

1995年6月27日,载有7名宇航员的美国“亚特兰蒂斯”号航天飞机,从卡纳维拉尔角升空,并开始追赶俄罗斯“和平”号空间站。最后,以每秒钟不超过3厘米的速度靠近“和平”号”……成功了!成功了!时间定格在了格林尼治时间1995年6月29日13时。

100吨重的航天飞机,123吨重的空间站,两个庞然大物对接组成了有史以来最重的航天器。它们在预定的轨道上,以相对于地面2.8万千米/小时的速度飞行。当人们在夜晚用望远镜观察这壮美的景象时,航天器里的宇航员们正在紧张地工作……

在“亚特兰蒂斯”号与“和平”号里工作的,有来自美国、俄罗斯、加拿大和德国四国的宇航员。对接成功后,他们联合开展了一系列空间医学实验。

7月4日,“亚特兰蒂斯”号与“和平”号脱离。经过“亚特兰蒂斯”号的补给,“和平”号带着充足的资源继续飞行。乘“亚特兰蒂斯”号航天飞机升空的两名俄罗斯宇航员留在了“和平”号上继续飞行,而原在“和平”号上的3名宇航员则乘“亚特兰蒂斯”号,返回了地面。这就使得这架美国航天飞机在返回时的乘客增至8名。7月7日,“亚特兰蒂斯”号按原定计划返回了地面,并带回了“和平”号上的部分实验标本。

回溯历史,美俄(苏)航天器的第一次空间对接发生在20年前。1975年,美国“阿波罗”飞船和苏联“联盟”号飞船,曾在宇宙中共同飞行了两天。而1995年美国“亚特兰蒂斯”号的这次飞行,也是美国的第100次载人航天飞行。历史发展到今天,航天技术正以日新月异的姿态阔步向前。科学是没有国界的,人类在空间活动中的国际合作作为一种趋势,正越来越受到世人的瞩目。

航天器的轨道如何对接?

航天器的轨道会合和对接,是航天活动中一项必不可少的技术。对确定了载人登月计划的美国来说,更是急需解决的一项关键技术。

进入轨道的航天器,在轨道上做无动力惯性飞行。要使两个航天器对接起来,首先要让它们在同一条轨道上会合。这要求其中一个航天器用携带的小火箭发动机产生动力,进行变轨机动飞行,去追赶另一个航天器。人们分别把两个航天器叫做追踪航天器和目标航天器。

载人航天器之间,由于需要有环形通道,一般采用"异体同构-周边对接机构",就是两个航天器上的对接机构是相同的,所有对接部件都在对接口的周边。

航天器的会合和对接,一般分为四个阶段,即地面引导、自动寻的、接近和停靠、对接合拢。

追踪航天器在地面控制中心的引导下,经过几次机动飞行,改变轨道,飞至目标航天器后面15-100千米处,使追踪航天器的测量装置能捕获到目标航天器。

追踪航天器用微波和激光等敏感器件测量与目标航天器的相对运动数据,并自动飞近到距目标航天器500-1000米的初始瞄准点。

追踪航天器首先捕获目标航天器的对接轴,然后在轨道平面外机动绕行,进入以对接口轴线为中心线的锥形对接走廊,然后逐渐调整飞行姿态,使其对接口轴线与目标航天器的对接口轴线重合。这时,两个航天器相距约100-200米。然后以3-1米/秒的相对速度接近。在这个过程中,追踪航天器必须随时精确测量与目标航天器之间的距离、相对速度和姿态。最后使用冷气喷射系统以0.15-0.18米/秒的速度与目标航天器相撞停靠。

相撞停靠后,关闭动力系统,两个航天器利用对接机构上的抓手、缓冲器和传力机构相互接触,环与环连接,并调平拉紧,然后用锁紧机构实现两个航天器的硬连接并密封。这时,两个航天器的对接通道可供人员往来。最后完成信息传输总线、电源线和流体管线的连接,使两个航天器成为一个整体。

完成会合和对接一般需要3-4小时。

当今世界航天技术的最新成果有哪些?

(一) 民用通信卫星仍是重点

2004年,通信卫星仍占据了民用卫星的主要市场。美国通信公司的AMC10、AMC11、AMC15和AMC16通信卫星,将提供电视、广播、互联网和宽带等服务;由美国劳拉空间系统公司制造“电星18”、“电星14”和DIRECTV 7S通信卫星,其中前两颗分别为亚太地区、美洲和北大西洋地区提供民用通信服务,而DIRECTV 7S则将为美国提供娱乐节目和本地信道服务。俄罗斯发射了“快船”AM-11和“快船”AM-1两颗民用通信卫星,它们将用于数字电视、电视电话和视频会议等服务。在法国发射升空的加拿大通信卫星公司“阿尼克-F2”通信卫星是迄今为止人类制造和发射的最大通信卫星。国际通信卫星组织发射了采用等离子推进系统进行轨道位置保持的“国际星10-02”通信卫星。为日本提供商业无线电通信服务的“超级鸟6号”通信卫星和日韩共用的首颗移动广播卫星MBSAT都在美国发射升空。欧洲的W3A通信卫星将为欧洲和非洲用户提供商业通信、互联网及电视转播服务。西班牙的“亚马逊1”通信卫星,它将为南美洲、北美洲以及西班牙在内的欧洲西南部地区用户提供电视广播、电话、VSAT、数据传输、因特网连接等多种通信服务。印度发射了世界上首颗专门用做教育用途的EDUSAT卫星,也是该国发射的最重的一颗卫星,它将为远程教育提供通信服务。

(二) 军事卫星不断加强

2004军事卫星仍主要集中在美国和俄罗斯两个航天大国,两国除分别完善其GPS和“格洛纳斯”导航卫星系统外,还发射了多颗秘密军事卫星。美国发射了GPS 2R-11、GPS 2R-12、GPS2R-13 3颗GPS卫星,NRO秘密侦察卫星,以及用于导弹告警的DSP 22卫星。俄罗斯共发射了7颗军用卫星,其中包括3颗“宇宙”系列秘密军用卫星和3颗“格洛纳斯”导航卫星,以及一颗用于俄罗斯军事演习的秘密军事卫星。

军事卫星另一重要领域军用小卫星技术也得到各国的关注。美国国防部相继推出了“微型卫星动能杀伤有效载荷(MKKP)”和“实验卫星系列(XSS)”两个微型卫星计划;由英国国防部和英国国家航天中心共同出资研制的“战术光学卫星”将于2005年上半年发射升空。

(三) “先兆”地球观测卫星成功发射

2004年7月15日,美国最新的地球观测系统(EOS)卫星“先兆”被成功送入700公里高的预定轨道。“先兆”是为NASA建造的第二颗地球观测系统卫星,设计寿命为6年,其主要任务是了研究大气成分,测定污染物的移动和平流层臭氧的恢复情况以及对气候变化的影响。该卫星与已经发射升空的“陆地”卫星及“水”卫星等一起组成了美国的地球观测系统。

(四) 中国卫星技术蓬勃发展

2004年是中国航天史上创纪录的一年,全年分别在酒泉、西昌、太原三大发射场进行了8次发射,共把10颗卫星送入太空,它们分别为:试验卫星1号、纳星1号、探测2号、第19颗和第20颗返回式卫星、实践6号A和实践6号B、风云2号气象卫星C星、资源2号卫星、试验卫星2号。其中,“探测2号”卫星的发射升空标志着我国实施的“地球空间双星探测计划”取得圆满成功。该卫星将与2003年发射的“探测1号”一起,与欧洲空间局“磁层探测计划”的4颗卫星联合布网,将实现人类历史上首次对地球空间的6点立体探测。试验卫星1号、2号和纳星1号3颗小卫星的成功发射升空说明中国航天技术在小卫星研制领域又取得新的进展。我国首颗电视直播卫星鑫诺2号的研制工作也进展顺利,并计划于2005年5月发射升空。该卫星将大大促进中国卫星业的发展,并推动国内卫星电视直播产业的形成和发展。2004年10月9日,我国和欧盟正式签署了欧洲民用卫星导航“伽利略”计划的技术合作协议,中国将出资2亿欧元,并承担部分卫星的发射任务,对该系统有20%的拥有权和100%的使用权,这将对我国卫星导航事业的发展起到重要的促进作用。2004年12月14日,世界最大的小卫星研制试验基地——小卫星及其应用国家工程研究中心在北京航天城落成,其设计能力为年产6~8颗卫星,该中心的成立将大大促进我国小卫星及微小卫星技术的发展。

中国国家航天局局长孙来燕表示,我国卫星技术未来发展的重点是建立长期稳定运行的对地观测体系,分阶段实现对中国周边地区乃至全球陆地、大气、海洋的立体观测和动态监测。

三、国际空间站艰难维护

(一) 俄罗斯成为维护国际空间站的主力

由于2003年美国“哥伦比亚号”航天飞机的失事,美国的航天飞机停飞,俄罗斯成为唯一能向国际空间站运送宇航员和货物的国家,致使国际空间站的维护产生了一定的困难。2004年,俄罗斯共向国际空间站进行了6次发射,其中“奋进号”飞船向空间站运送了4次货物,“联盟号”飞船进行两次载人飞行,俄罗斯无疑已成为了国际空间站维护的主角。另外,布什于2004年提出2010年完成国际空间站美国承担的建造任务后,美国将退出空间站的项目,这也给国际空间站未来的发展带来了负面影响。

(二) 国际空间站科学研究成果显著

由于运力的不足,2004年国际空间站的宇航员克服食物和饮用水短缺等困难,取得了丰硕的科研成果。2004年4月30日返回的国际空间站第8次长期考察,该考察组的卡列里和福阿莱在太空轨道上进行了20多项长期实验。为准备未来进行火星载人飞行,他们在国际空间站上进行了人体模型试验,测试长期火星载人飞行过程中,太空辐射对人体器官的影响等。2004年10月14日,国际空间站第9次长期考察返回,宇航员帕达尔卡和芬克成功地进行了4次太空行走。前两次成功地将4个大型陀螺仪中的一个恢复供电,使重达200吨的国际空间站能够在飞行中保持稳定,并将太阳能电池板对准太阳。第三次是在“曙光号”功能舱外安装由数个激光反射器组成的激光系统。第4次出舱的主要任务则是在“星辰号”服务舱外安装3个天线。此外,他们还在空间站上进行了约40次科学实验,带回了国际空间站内的一些实验数据和材料,其中包括其培育的第二代太空豌豆种子。另外,由焦立中和沙里波夫组成的第十次长期考察团将在空间站工作196天,在此期间他们将进行大量科学试验,其中包括艾滋病疫苗效果观察等。他们将于2005年1月和3月分别进行两次太空行走,并为迎接明年恢复飞行的美国航天飞机再次飞抵国际空间站做准备工作。

四、地球轨道探测器喜忧参半

(一) “哈勃”太空望远镜将终结使命

“哈勃”太空望远镜无疑是世界上最著名的太空观测设备,它经过了4次维修,已在太空服务了14年之久。由于2004年年初美国对其航天计划进行了调整,宣布将不再对“哈勃”天文望远镜进行维修,使得这一为人类天文事业作出重大贡献的望远镜将不得不于2007~2008年间退出历史舞台。这件事引起了世界各方面的争论,无论如何,在新的设备发射升空以前,这一重要探测设备的退役无疑将给人类对宇宙的探测带来一定的损失。

(二) 新型太空望远镜“詹姆斯.韦伯”仍在研制之中

1996年,美国正式开始了将取代“哈勃”的新一代太空望远镜“詹姆斯·韦伯”的研制工作。“詹姆斯·韦伯”太空望远镜预计造价8.2亿美元,设计寿命为5~10年,它将于2011年8月发射升空。该望远镜将携带一台红外摄像机、一台近红外光谱摄制仪以及一台组合式中红外摄像机与光谱摄制仪,将被发射到距地球150万公里的高空。由于距离地球太远,无法派人进行维修,因而其设计制造要求极高。

(三) “引力探测B”升空引人关注

2004年4月20日,由美国国家航空航天局和斯坦福大学联合研制,耗时45年,耗资7亿多美元的“引力探测B”终于被送入预定的太空轨道,抵达预定工作位置后,还需要2个月的时间进行准备,然后开始长达16个月的测量。这次成功发射意味着美国验证爱因斯坦广义相对论长达45年的梦想终于变成了现实。“引力探测B”是NASA执行的纯研究项目之一,旨在通过测量地球引起的时空弯曲和地球旋转引起的时空扭曲以验证爱因斯坦广义相对论。该探测器将帮助科学家更好地了解宇宙的基本结构,以及更清晰地认识物质世界和相对论间的关系。

(四) “雨燕”伽马射线探测器升空

2004年11月20日,耗资2.5亿美元,由美国航空航天局和意大利、英国的航天部门联合发起研制的“雨燕”伽马射线探测器经多次推迟后终于成功发射升空。该探测器仅重1470千克,配有三台望远镜,能够在捕捉到伽马风暴后的最短时间内进行暴源和余辉的多波段观测。据称“雨燕”是有史以来旋转速度最快的太空科学探测器,可以完成探究伽马风暴的起源、甄别伽马风暴的类别、研究伽马风暴的演化等任务,从而为揭开宇宙中黑洞形成之迷搜索进一步的证据。

五、2005年深空探测仍是热点

由于2004年美国“勇气号”和“机遇号”探测器成功登陆火星,深空探测仍将成为2005年世界航天技术研究的热点。2005年1月8日,日本宣布新的太空计划,其核心内容是在月球表面建立无人太空基地,以及在比月球更远的地方建立“深层空间站”等。1月12日,美国成功发射了“深入撞击号”探测器,该探测器将在几个月的飞行后,于7月4日抵达“坦普尔1号”彗星。届时,它将释放一个小型撞击舱以时速37000公里撞击彗核,同时利用观测舱记录下碰撞的全过程并对飞散出的各种物质进行详细分析。1月14日,欧空局的“惠更斯”着陆器成功登陆“土卫六”,并开始向母船“卡西尼”发送数据。5月12号,美国“发现号”航天飞机将开始执行自2003年“哥伦比亚号”失事后的首次飞行任务。8月10日,美国航空航天局将发射旨在寻求火星是否有水的证据的火星侦察探测器。10月26日,欧洲将发射“金星快船”探测器,执行地球近邻金星的无人探测任务。中国也将在2005年下半年发射“神舟六号”载人飞船。

领先一步的空天验证机讲了什么科学知识?

研制空天飞机的设想在20世纪30~40年代就已经出现。到50年代中期,美国开始研究试验一种高速飞行的X-15火箭型试验机,从升空的B-52轰炸机机翼上投放下来,靠自身发动机,使之飞行,高度可达108公里,时速可达7200公里。利用这种方式曾进行过250次试飞,50年代末期又开始执行一项X-20型可重复使用的军用载人航天器,但未成功,于1963年12月撤消此计划。

与此同时,美国空军开始执行一项美国第一个空天飞机计划,预计这种飞机能水平起降,同时可进入轨道的飞机制造方案,甚至已制造了全尺寸机翼/机身结构,但也于1963年底被撤消了计划。

进入20世纪80年代以来,随着超音速燃料冲压喷气发动机的技术突破,耐高温材料的研制进展,巨型计算机应用和计算机模拟技术的发展,使人们又重新开始重视空天飞机的研究与开发。1982年美国国防部在研究采用液氢燃料的冲压发动机与超音速燃烧冲压喷气发动机计划取得进展的基础上,又开始研究空天飞机。美国空军于1983年投资60万美元委托有关科研单位研究是否可能建造一架“跨大气层飞机”。后来从14个初步方案中选出6个,于1984年8月7日再次投资100万美元,进行方案论证,并成立了“跨大气层飞机计划局”。国防部和有关部局也组织研究发动机设计方案,先后投资700万美元,最后于1985年完成第二阶段研究计划。最后得出结论:跨大气层飞机是一个可以实现的方案,并确定于1990年9月开始研制空天飞机的试验机--X-30,最后投资30亿美元,建造了两架。

这种飞机外形尺寸和波音727客机差不多,最高飞行时速可达28962公里。验证机的缩比样机运载能力为1114公斤,可载乘员2人。采用可变循环发动机和液氢燃料火箭发动机的混合推进方式,使用一种高能“油脂”液氢燃料。它比一般液氢稠密,需加压输送。这种燃料可减少空天飞机起飞重量30%左右,发动机燃料室的冷却采用一种新技术一一种产生氢的“薄雾”来实现。

新型航天器的具体介绍!!!

宇宙飞船

载人飞船又称宇宙飞船,是一种运送航天员到达太空并安全返回的一次性使用的航天器。它能基本保证航天员在太空短期生活并进行一定的工作。它的运行时间一般是几天到半个月,一般乘2到3名航天员。

世界上第一艘载人飞船是“东方”1号宇宙飞船。它由两个舱组成,上面的是密封载人舱,又称航天员座舱。这是一个直径为2.3米的球体。舱内设有能保障航天员生活的供水、供气的生命保障系统,以及控制飞船姿态的姿态控制系统、测量飞船飞行轨道的信标系统、着陆用的降落伞回收系统和应急救生用的弹射座椅系统。另一个舱是设备舱,它长3.1米,直径为2.58米。设备舱内有使载人舱脱离飞行轨道而返回地面的制动火箭系统、供应电能的电池、储气的气瓶、喷嘴等系统。“东方”1号宇宙飞船总质量约为4700千克。它和运载火箭都是一次性的,只能执行一次任务。

航天飞机

天地往返穿梭器—航天飞机

1969年4月,美国宇航局提出建造一种可重复使用的航天运载工具的计划。1972年1月,美国正式把研制航天飞机空间运输系统列入计划,确定了航天飞机的设计方案,即由可回收重复使用的固体火箭助推器,不回收的两个外挂燃料贮箱和可多次使用的轨道器三个部分组成。经过5年时间,1977年2月研制出一架创业号航天飞机轨道器,由波音747飞机驮着进行了机载试验。1977年6月18日,首次载人用飞机背上天空试飞,参加试飞的是宇航员海斯(C·F·Haise)和富勒顿(G·Fullerton)两人。8月12日,载人在飞机上飞行试验圆满完成。又经过4年,第一架载人航天飞机终于出现在太空舞台,这是航天技术发展史上的又一个里程碑。

1981年4月12日,在卡纳维拉尔角肯尼迪航天中心聚集着上百万人,参观第一架航天飞机哥伦比亚号发射。宇航员翰·杨(John W·Young)和克里平(Robert L·Crippen)揭开了航天史上新的一页。这架航天飞机总长约56米,翼展约24米,起飞重量约2040吨,起飞总推力达2800吨,最大有效载荷29.5吨。它的核心部分轨道器长37.2米,大体上与一架DC—9客机的大小相仿。每次飞行最多可载8名宇航员,飞行时间7至30天,轨道器可重复使用100次。航天飞机集火箭,卫星和飞机的技术特点于一身,能像火箭那样垂直发射进入空间轨道,又能像卫星那样在太空轨道飞行,还能像飞机那样再入大气层滑翔着陆,是一种新型的多功能航天飞行器。

从1981年至1993年底,美国一共有5架航天飞机进行了59次飞行,其中哥伦比亚号15次,挑战者号10次,发现号17次,亚特兰蒂斯号12次,奋进号5次。每次载宇航员2至8名,飞行时间从2天到14天。在12年中,已有301人次参加航天飞机飞行,其中包括18名女宇航员。航天飞机的59次飞行中,在太空施放卫星50多颗,载2座空间站到太空轨道,发射了3个宇宙探测器,1个空间望远镜和1个γ射线探测器,进行了卫星空间回收和空间修理,开展了一系列科学实验活动,取得了丰硕的探测实验成果。

美国航天飞机创造了许多航天新纪录。航天飞机首航指令长约翰·杨6次飞上太空,是世界上参加航天次数最多的宇航员。1983年6月18日女宇航员莎丽·赖德(Sally K·Ride)乘挑战者号上天飞行,名列美国妇女航天的榜首。1983年8月30日,挑战者号把美国第一个黑人宇航员布鲁福德(Guion S·Bluford)送上太空飞行。1984年2月3日乘挑战者号上天的麦坎德利斯(B·McCandless),成为世界上第一位不系安全带到太空行走的宇航员。1984年4月6日挑战者号上天后,宇航员首次抓获和修理轨道上的卫星成功。1984年10月5日参加挑战者号飞行的莎丽文(Kathryn D·Sullivan)成为美国第一位到太空行走的女宇航员。1985年1月24日发现号升空,首次执行秘密的军事任务。1985年4月29日,第一位华裔宇航员王赣骏(Tayler Wang)乘挑战者号上天参加科学实验活动。1985年11月26日,亚特兰蒂斯载宇航员上天第一次进行搭载空间站试验。1992年5月7日奋进号首次飞行,宇航员在太空第一次用手工操作抢救回收卫星成功。7月31日亚特兰蒂斯号上天,首次进行绳系卫得发电试验。9月12日奋进号将第一位黑人女宇航员,第一位日本记者和第一对宇航员夫妇载入太空飞行。

暴风雪号航天飞机首航成功

1988年11月15日莫斯科时间清晨6时,前苏联的暴风雪号航天飞机从拜科努尔航天中心首次发射升空,47分钟后进入距地面250千米的圆形轨道。它绕地球飞行两圈,在太空遨游3小时后,按预定计划于9时25分安全返航,准确降落在离发射地点12千米外的混凝土跑道上,完成了一次无人驾驶的试验飞行。

暴风雪号航天飞机大小与普通大型客机相差无几,外形同美国航天飞机极其相仿,机翼呈三角形。机长36米,高16米,翼展24米,机身直径5.6米,起飞重量105吨,返回后着陆重量为82吨。它有一个长18.3米,直径4.7米的大型货舱,能将30吨货物送上近地轨道,将20吨货物运回地面。头部有一容积70立方米的乘员座舱,可乘10人。科学家们认为,这次完全靠地面控制中心遥控机上的电脑系统,在无人驾驶的条件下自动返航并准确降落在狭长跑道上,其难度林比1981年美国航天飞机有人驾驶试飞大得多。首先,暴风雪号的主发动机不是装在航天飞机尾部,而是安装在能源号火箭上,这样就大大减轻了航天飞机的入轨重量,同时腾出位置安装小型机动飞行发动机和减速制动伞。其次,暴风雪号着陆时,可用尾部的小型发动机做有动力的机动飞行,安全准确地降落在狭长跑道上,万一着陆失败,还可以将航天飞机升起来进行第二次着陆,从而提高了可靠性。而美国航天飞机靠无动力滑翔着陆只能一次成功。第三,暴风雪号能象普通飞机那样借助副翼,操纵舵和空气制动器来控制在大气层内滑行,还准备有减速制动伞,在降落滑跑过程中当速度减慢到50千米/小时自动弹出,使航天飞机在较短距离内停下来。暴风雪号首航成功,标志着前苏联航天活动跨入一个新的阶段,为建立更加完善的天地往返运输系统辅平了道路。原计划一年后进行载人飞行,但由于机上系统的安全可靠尚未得到充分保证,加之其后政治和经济等方面的原因,载入飞行的时间便推迟了。

1986年1月28日,美国挑战者号航天飞机载7名宇航员,进行航天飞机的第25次飞行。这一天早晨,成千上万名参观者聚集到肯尼迪航天中心,等待一睹挑战者号腾飞的壮观景象。上午11时38分,在人们目送之下,竖立在发射架上的挑战者号点火升空,直飞天穹,看台上一片欢腾。但航天飞机飞到73秒时,空中突然传来一声闷响,只见挑战者号顷刻之间爆裂成一团桔红色火球,碎片拖着火焰和白烟四散飘飞,坠落到大西洋。挑战者号发生爆炸,酿成了一场惨祸。

这次太空罹难的7名宇航员中,有两名女宇航员。特别引人注目的是第一次参加太空飞行的女教师麦考利夫(Christa McAuliffe)。原计划她将在太空给她的学生进行现场授课,不幸的是麦考利夫壮志未酬,献出了宝贵的生命。这次太空事故为航天飞机继续飞行罩上了一层浓重的阴影。打捞收集挑战者号残骸碎片后经过调查分析,最后确定挑战者号爆炸是由于右侧固体火箭助推器连接处因设计上的缺陷和气温过低,O型密封垫圈失效所致。后来科学家们对所有航天飞机进行了全面的检查,采取了改进措施,提高了航天飞机的可靠程度。两年后,美国航天飞机开始恢复飞机。

1992年5月7日,美国航天飞机“奋进号”载着7名宇航员首次升空。在9天的太空之旅中,宇航员援救了滞留太空两年的“国际通信卫星6/F3”并进行了空间站的安装练习,创下了四次太空行走的纪录。

空天验证机是什么?

研制空天飞机的设想在20世纪30~40年代就已经出现。到50年代中期,美国开始研究试验一种高速飞行的X-15火箭型试验机,从升空的B-52轰炸机机翼上投放下来,靠自身发动机,使之飞行,高度可达108公里,时速可达7200公里。利用这种方式曾进行过250次试飞,50年代末期又开始执行一项X-20型可重复使用的军用载人航天器,但未成功,于1963年12月撤消此计划。

与此同时,美国空军开始执行一项美国第一个空天飞机计划,预计这种飞机能水平起降,同时可进入轨道的飞机制造方案,甚至已制造了全尺寸机翼/机身结构,但也于1963年底被撤消了计划。

进入20世纪80年代以来,随着超音速燃料冲压喷气发动机的技术突破,耐高温材料的研制进展,巨型计算机应用和计算机模拟技术的发展,使人们又重新开始重视空天飞机的研究与开发。1982年美国国防部在研究采用液氢燃料的冲压发动机与超音速燃烧冲压喷气发动机计划取得进展的基础上,又开始研究空天飞机。美国空军于1983年投资60万美元委托有关科研单位研究是否可能建造一架“跨大气层飞机”。后来从14个初步方案中选出6个,于1984年8月7日再次投资100万美元,进行方案论证,并成立了“跨大气层飞机计划局”。国防部和有关部局也组织研究发动机设计方案,先后投资700万美元,最后于1985年完成第二阶段研究计划。最后得出结论:跨大气层飞机是一个可以实现的方案,并确定于1990年9月开始研制空天飞机的试验机——X-30,最后投资30亿美元,建造了两架。

这种飞机外形尺寸和波音727客机差不多,最高飞行时速可达28962公里。验证机的缩比样机运载能力为1114公斤,可载乘员2人。采用可变循环发动机和液氢燃料火箭发动机的混合推进方式,使用一种高能“油脂”液氢燃料。它比一般液氢稠密,需加压输送。这种燃料可减少空天飞机起飞重量30%左右,发动机燃料室的冷却采用一种新技术一一种产生氢的“薄雾”来实现。

论当今世界航天技术发展趋势

据相关统计,截至2004年12月26日,世界上进行了数十次成功的航天发射。尽管受到2003年一些事故的影响,但2004年仍是世界航天技术发展的重要一年。虽然欧洲的“猎兔犬2号”登陆器于2003年年底在登陆火星时失踪,日本的“希望号”火星探测器也最终宣布失败,但伴随着2004年年初美国“勇气号”和“机遇号”在火星上的成功着陆,以及美国、欧盟等国家和地区相继推出了各自新的航天发展计划,人类对深空的探测再次掀起了热潮,深空控测技术将会得到长足发展。至于国际空间站、各种用途卫星、地球轨道探测器等航天领域的技术发展则喜忧参半,一方面各种卫星技术仍是航天领域研究的热点,另一方面,由于2003年美国“哥伦比亚号”航天飞机的失事,给国际空间站的建设与维护带来了一定的困难,另外,美国宣布不再对“哈勃”天文望远镜进行维修,也为地球轨道探测器的发展带了一定的影响。

一、深空探测备受关注

2004年是世界深空探测收获颇丰的一年,除年初美国的“勇气号”和“机遇号”相继登陆火星令人振奋外,其他的一些深空探测计划也获得了很大的进展。2004年1月,飞行已久的美国“星尘号”彗星探测器与“怀尔德2号”彗星交会,并在离彗核很近的距离用密度极低的氧化硅气溶胶首次获取彗核物质,现正在返回地球的途中,将实现人类首次把除地球的卫星——月球以外的样本送回地球。2004年3月2日,欧空局发射了其第一个彗星探测器“罗塞塔”,该探测器将于10年后进入“楚留莫夫-格拉西门克”彗星轨道,并向该彗星释放着陆器,这在人类航天史上也是前所未有。2004年7月1日,世界首个土星专用探测器“卡西尼”终于在飞行了7年后进入了土星轨道,目前已发回了许多宝贵土星图像,并在12月25日成功向“土卫六”表面释放“惠更斯”着陆器。2004年8月3日,因天气原因推迟发射的美国“信使号”水星探测器成功升空,按计划该探测器将于2011年3月进入环水星轨道。2004年11月15日,欧洲的“智慧1号”月球探测器经过13个月飞行也进入了绕月轨道,从而实现了世界首个联合使用太阳能电池推进系统和月球引力的空间探测器达到了预期的目标。

此外,2004年世界上几个主要的航天大国还相继推出了一系列新的深空探测计划,进一步将深空探测推向一个新的高潮。

(一) 美国新航天计划目标宏大

2004年1月14号,美国总统布什在首都华盛顿的美国航空航天局(NASA)总部发表讲话,宣布美国未来的宏大航天发展计划。该计划的主要内容包括:2008年前发射无人探测器到月球;2010年前完成国际空间站,届时服役了30年的航天飞机也将退役;2014年前用名为“机组探测飞行器(CEV)”的新型载人飞行器进行载人航天飞行;2020年前重返月球并建立月球基地,以支持载人火星探索。据估算,实现登上火星的目标,至少需要花费5000亿~6000亿美元,而据美国预算与政策研究中心的执行总监罗伯特.格林斯坦表示,布什的登月和登陆火星计划成本可能高达10 000亿美元。

(二) 欧洲“曙光”计划不甘示弱

2004年1月13日,虽然“猎兔犬2号”火星登陆器至今下落不明,但是欧洲空间局(欧空局)仍宣布推出了名为“曙光”的征服太空计划,该计划拟在2024年首先登陆月球,之后将于2030年造访火星。该计划第一阶段(2005~2009年)的预算经费高达9亿欧元。按照“曙光”计划,欧空局将有能力在2010年让其自行研制的探测器漫步火星。目前,欧空局已经就“曙光”计划的第一阶段和工业界达成了合作协议。欧空局计划于2007年发射一颗小型卫星,以测试如何才能将火星探测器连同火星土壤标本一起顺利收回地球,然后在2011~2014年间真正实现将火星岩石标本带回地球的目标。

(三) 中国“探月工程”计划秩然有序

2004年2月25日,中国国防科学技术工业委员会组织召开了绕月探测工程领导小组第一次会议,宣布我国绕月探测工程从即日起正式进入实施阶段。整个探月工程分为“绕”、“落”、“回”三个阶段。第一阶段为2004~2006年,将研制和发射第一颗月球探测卫星,该卫星将绕月飞行,并将收集的探测数据传回地面。第二阶段为2007~2010年,目标是研制和发射航天器,以软着陆的方式降落在月球上进行探测。第三阶段为2011~2020年,目标是月球表面巡视探测与采样返回。该阶段将分两期完成,前期(2011~2015年)主要研制和发射新型软着陆月球巡视车,后期(2015年后)主要研制和发射小型采样返回舱、月表钻岩机、月表采样器,机器人操作臂等,并将采集的样本送回地球,同时对着陆区进行考察,为下一步载人登月打下基础。其中,第一阶段工程将投入14亿元人民币,第一颗名为“嫦娥一号”的卫星已于2004年完成样机设计,计划于2006年发射升空。

此外,在努力实现月球探测第一阶段和第二阶段工作的基础上,我国还将积极开展火星及其他行星探测器的可行性和方案论证,并参与国际合作,以在深空探测方面有更大的进展。

(四) 俄罗斯深空探测计划欲重振雄风

俄罗斯联邦航天署署长佩尔米诺夫2004年10月上旬表示,俄罗斯计划在2009年向火星卫星“福布斯”(火卫一)发射无人探测器“福布斯-土壤”,以探测火星的土壤成分。据俄拉沃奇金科研生产联合体总裁普奇哈泽介绍,目前该联合体已设计出“福布斯-土壤”无人探测器草图并已开始进行相关试验。

据俄罗斯国际文传电讯社报道,俄罗斯航天局副局长尼古拉.莫伊瑟夫在2004年11月8日接受采访时表示,俄罗斯将在2020~2025年期间在月球上建立首座自动化基地。为配合有关计划的实施,俄罗斯目前正在加紧研制新一代宇宙飞船“三桅帆船”和载人轨道平台。预计第一艘“三桅帆船”型宇宙飞船将在2012年发射升空。

(五) 印度无人探月计划开始启动

2004年9月11日,印度一位官方发言人表示,印度内阁已批准印度在2008年以前进行无人月球探测计划。印度的第一个月球探测器名为“Chandrayaan-I”,计划于2008年由极地卫星运载火箭(PSLV)将其送入地球同步转移轨道,随后将由一个双推进剂系统把它从转移轨道送入月球轨道。据估计,印度的第一个无人月球探测计划约需8300万美元。

(六) 日本深空探测计划举步为艰

2003年日本的深空探测计划受到了很大的挫折,2003年12月该国的“希望号”火星探测器因故障失去了进入预定轨道的最后机会。月球探测方面,日本原计划于2004年8月发射的“月亮A号”探测器因技术和资金困难而变更了发射日期,新日期至今仍未确定。2004年8月11日,日本宇宙航空研究开发机构向文部科学省宇宙开发委员会报告说,预定2006年发射月球探测卫星“月神A号”计划也难以实施,卫星3年内升空可能性不大,而且如果问题得不到及时解决,也可能中止该计划。此外,2003年日本航天局还准备实施另外一颗月球探测器“月神2号”的试验计划,由于得不到必要的财政支持也被迫取消。

虽然存在种种困难,日本研究人员仍计划研制能探测火星大气的小型卫星,并将其装入俄罗斯计划于2009年发射的火星探测器中,共同对火星进行考察。

二、世界卫星技术稳步发展

截至2004年12月26号已经完成的航天发射中,世界各地共将50多颗通信、军事、地球轨道探测等类型的卫星送至太空。其中航天大国美国发射次数和卫星数量最多,俄罗斯、中国等国家紧随其后。从2004年世界卫星事业的发展情况看,商用通信卫星仍是重点,随着世界对移动通信、数字电视、互联网等服务的需求不断增加,通信卫星发射也呈增长之势。在军事卫星方面,由于世界反恐形势日益紧张,以及应对可能发生的地区冲突,世界各大国都在加强其空间军事力量,各种军用卫星技术的研究也成为了重点。其中,美国在进一步完善了其GPS系统的同时,增加了导弹告警和其他秘密侦察卫星。俄罗斯也在改进其“格洛纳斯”系统的同时,不断加强其卫星侦察能力。在科学研究方面,中国2004年发射升空的10颗卫星中多数是用于对地观测的科学实验卫星,为世界和平利用卫星作出了重要贡献。

(一) 民用通信卫星仍是重点

2004年,通信卫星仍占据了民用卫星的主要市场。美国通信公司的AMC10、AMC11、AMC15和AMC16通信卫星,将提供电视、广播、互联网和宽带等服务;由美国劳拉空间系统公司制造“电星18”、“电星14”和DIRECTV 7S通信卫星,其中前两颗分别为亚太地区、美洲和北大西洋地区提供民用通信服务,而DIRECTV 7S则将为美国提供娱乐节目和本地信道服务。俄罗斯发射了“快船”AM-11和“快船”AM-1两颗民用通信卫星,它们将用于数字电视、电视电话和视频会议等服务。在法国发射升空的加拿大通信卫星公司“阿尼克-F2”通信卫星是迄今为止人类制造和发射的最大通信卫星。国际通信卫星组织发射了采用等离子推进系统进行轨道位置保持的“国际星10-02”通信卫星。为日本提供商业无线电通信服务的“超级鸟6号”通信卫星和日韩共用的首颗移动广播卫星MBSAT都在美国发射升空。欧洲的W3A通信卫星将为欧洲和非洲用户提供商业通信、互联网及电视转播服务。西班牙的“亚马逊1”通信卫星,它将为南美洲、北美洲以及西班牙在内的欧洲西南部地区用户提供电视广播、电话、VSAT、数据传输、因特网连接等多种通信服务。印度发射了世界上首颗专门用做教育用途的EDUSAT卫星,也是该国发射的最重的一颗卫星,它将为远程教育提供通信服务。

(二) 军事卫星不断加强

2004军事卫星仍主要集中在美国和俄罗斯两个航天大国,两国除分别完善其GPS和“格洛纳斯”导航卫星系统外,还发射了多颗秘密军事卫星。美国发射了GPS 2R-11、GPS 2R-12、GPS2R-13 3颗GPS卫星,NRO秘密侦察卫星,以及用于导弹告警的DSP 22卫星。俄罗斯共发射了7颗军用卫星,其中包括3颗“宇宙”系列秘密军用卫星和3颗“格洛纳斯”导航卫星,以及一颗用于俄罗斯军事演习的秘密军事卫星。

军事卫星另一重要领域军用小卫星技术也得到各国的关注。美国国防部相继推出了“微型卫星动能杀伤有效载荷(MKKP)”和“实验卫星系列(XSS)”两个微型卫星计划;由英国国防部和英国国家航天中心共同出资研制的“战术光学卫星”将于2005年上半年发射升空。

(三) “先兆”地球观测卫星成功发射

2004年7月15日,美国最新的地球观测系统(EOS)卫星“先兆”被成功送入700公里高的预定轨道。“先兆”是为NASA建造的第二颗地球观测系统卫星,设计寿命为6年,其主要任务是了研究大气成分,测定污染物的移动和平流层臭氧的恢复情况以及对气候变化的影响。该卫星与已经发射升空的“陆地”卫星及“水”卫星等一起组成了美国的地球观测系统。

(四) 中国卫星技术蓬勃发展

2004年是中国航天史上创纪录的一年,全年分别在酒泉、西昌、太原三大发射场进行了8次发射,共把10颗卫星送入太空,它们分别为:试验卫星1号、纳星1号、探测2号、第19颗和第20颗返回式卫星、实践6号A和实践6号B、风云2号气象卫星C星、资源2号卫星、试验卫星2号。其中,“探测2号”卫星的发射升空标志着我国实施的“地球空间双星探测计划”取得圆满成功。该卫星将与2003年发射的“探测1号”一起,与欧洲空间局“磁层探测计划”的4颗卫星联合布网,将实现人类历史上首次对地球空间的6点立体探测。试验卫星1号、2号和纳星1号3颗小卫星的成功发射升空说明中国航天技术在小卫星研制领域又取得新的进展。我国首颗电视直播卫星鑫诺2号的研制工作也进展顺利,并计划于2005年5月发射升空。该卫星将大大促进中国卫星业的发展,并推动国内卫星电视直播产业的形成和发展。2004年10月9日,我国和欧盟正式签署了欧洲民用卫星导航“伽利略”计划的技术合作协议,中国将出资2亿欧元,并承担部分卫星的发射任务,对该系统有20%的拥有权和100%的使用权,这将对我国卫星导航事业的发展起到重要的促进作用。2004年12月14日,世界最大的小卫星研制试验基地——小卫星及其应用国家工程研究中心在北京航天城落成,其设计能力为年产6~8颗卫星,该中心的成立将大大促进我国小卫星及微小卫星技术的发展。

中国国家航天局局长孙来燕表示,我国卫星技术未来发展的重点是建立长期稳定运行的对地观测体系,分阶段实现对中国周边地区乃至全球陆地、大气、海洋的立体观测和动态监测。

三、国际空间站艰难维护

(一) 俄罗斯成为维护国际空间站的主力

由于2003年美国“哥伦比亚号”航天飞机的失事,美国的航天飞机停飞,俄罗斯成为唯一能向国际空间站运送宇航员和货物的国家,致使国际空间站的维护产生了一定的困难。2004年,俄罗斯共向国际空间站进行了6次发射,其中“奋进号”飞船向空间站运送了4次货物,“联盟号”飞船进行两次载人飞行,俄罗斯无疑已成为了国际空间站维护的主角。另外,布什于2004年提出2010年完成国际空间站美国承担的建造任务后,美国将退出空间站的项目,这也给国际空间站未来的发展带来了负面影响。

(二) 国际空间站科学研究成果显著

由于运力的不足,2004年国际空间站的宇航员克服食物和饮用水短缺等困难,取得了丰硕的科研成果。2004年4月30日返回的国际空间站第8次长期考察,该考察组的卡列里和福阿莱在太空轨道上进行了20多项长期实验。为准备未来进行火星载人飞行,他们在国际空间站上进行了人体模型试验,测试长期火星载人飞行过程中,太空辐射对人体器官的影响等。2004年10月14日,国际空间站第9次长期考察返回,宇航员帕达尔卡和芬克成功地进行了4次太空行走。前两次成功地将4个大型陀螺仪中的一个恢复供电,使重达200吨的国际空间站能够在飞行中保持稳定,并将太阳能电池板对准太阳。第三次是在“曙光号”功能舱外安装由数个激光反射器组成的激光系统。第4次出舱的主要任务则是在“星辰号”服务舱外安装3个天线。此外,他们还在空间站上进行了约40次科学实验,带回了国际空间站内的一些实验数据和材料,其中包括其培育的第二代太空豌豆种子。另外,由焦立中和沙里波夫组成的第十次长期考察团将在空间站工作196天,在此期间他们将进行大量科学试验,其中包括艾滋病疫苗效果观察等。他们将于2005年1月和3月分别进行两次太空行走,并为迎接明年恢复飞行的美国航天飞机再次飞抵国际空间站做准备工作。

四、地球轨道探测器喜忧参半

(一) “哈勃”太空望远镜将终结使命

“哈勃”太空望远镜无疑是世界上最著名的太空观测设备,它经过了4次维修,已在太空服务了14年之久。由于2004年年初美国对其航天计划进行了调整,宣布将不再对“哈勃”天文望远镜进行维修,使得这一为人类天文事业作出重大贡献的望远镜将不得不于2007~2008年间退出历史舞台。这件事引起了世界各方面的争论,无论如何,在新的设备发射升空以前,这一重要探测设备的退役无疑将给人类对宇宙的探测带来一定的损失。

(二) 新型太空望远镜“詹姆斯.韦伯”仍在研制之中

1996年,美国正式开始了将取代“哈勃”的新一代太空望远镜“詹姆斯·韦伯”的研制工作。“詹姆斯·韦伯”太空望远镜预计造价8.2亿美元,设计寿命为5~10年,它将于2011年8月发射升空。该望远镜将携带一台红外摄像机、一台近红外光谱摄制仪以及一台组合式中红外摄像机与光谱摄制仪,将被发射到距地球150万公里的高空。由于距离地球太远,无法派人进行维修,因而其设计制造要求极高。

(三) “引力探测B”升空引人关注

2004年4月20日,由美国国家航空航天局和斯坦福大学联合研制,耗时45年,耗资7亿多美元的“引力探测B”终于被送入预定的太空轨道,抵达预定工作位置后,还需要2个月的时间进行准备,然后开始长达16个月的测量。这次成功发射意味着美国验证爱因斯坦广义相对论长达45年的梦想终于变成了现实。“引力探测B”是NASA执行的纯研究项目之一,旨在通过测量地球引起的时空弯曲和地球旋转引起的时空扭曲以验证爱因斯坦广义相对论。该探测器将帮助科学家更好地了解宇宙的基本结构,以及更清晰地认识物质世界和相对论间的关系。

(四) “雨燕”伽马射线探测器升空

2004年11月20日,耗资2.5亿美元,由美国航空航天局和意大利、英国的航天部门联合发起研制的“雨燕”伽马射线探测器经多次推迟后终于成功发射升空。该探测器仅重1470千克,配有三台望远镜,能够在捕捉到伽马风暴后的最短时间内进行暴源和余辉的多波段观测。据称“雨燕”是有史以来旋转速度最快的太空科学探测器,可以完成探究伽马风暴的起源、甄别伽马风暴的类别、研究伽马风暴的演化等任务,从而为揭开宇宙中黑洞形成之迷搜索进一步的证据。

五、2005年深空探测仍是热点

由于2004年美国“勇气号”和“机遇号”探测器成功登陆火星,深空探测仍将成为2005年世界航天技术研究的热点。2005年1月8日,日本宣布新的太空计划,其核心内容是在月球表面建立无人太空基地,以及在比月球更远的地方建立“深层空间站”等。1月12日,美国成功发射了“深入撞击号”探测器,该探测器将在几个月的飞行后,于7月4日抵达“坦普尔1号”彗星。届时,它将释放一个小型撞击舱以时速37000公里撞击彗核,同时利用观测舱记录下碰撞的全过程并对飞散出的各种物质进行详细分析。1月14日,欧空局的“惠更斯”着陆器成功登陆“土卫六”,并开始向母船“卡西尼”发送数据。5月12号,美国“发现号”航天飞机将开始执行自2003年“哥伦比亚号”失事后的首次飞行任务。8月10日,美国航空航天局将发射旨在寻求火星是否有水的证据的火星侦察探测器。10月26日,欧洲将发射“金星快船”探测器,执行地球近邻金星的无人探测任务。中国也将在2005年下半年发射“神舟六号”载人飞船。

  • 评论列表:
  •  蓝殇花桑
     发布于 2022-06-02 13:10:51  回复该评论
  • ,然后用锁紧机构实现两个航天器的硬连接并密封。这时,两个航天器的对接通道可供人员往来。最后完成信息传输总线、电源线和流体管线的连接,使两个航天器成为一个整体。完成会合和对接一般需要3-4小时。当今世界航天技术的最新成果有哪些?(一) 民用通信卫星仍是重点2004年,

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.