高分悬赏
圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母“π”来表示。1706年,英国人琼斯首次创用π代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π已成为圆周率的专用符号,π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。
在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将值改为根号10(约为3.16)。真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于三又七分之一而大于三又七十一分之十。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π值的,是魏晋时期的刘徽,在公元263年,他创用了用圆的内接正多边形的面积来逼近圆面积的方法,算得π值为3.14。我国称这种方法为“割圆术”。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。
公元460年,南朝的祖冲之利用刘徽的割圆术,把π值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7和113/355,用分数来代替π,极大地简化了计算,这种思想比西方也早一千多年。
祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为“卢道夫数”。
之后,西方数学家计算 的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的π值。计算机问世后,π的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的π值,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的值已到了4.8亿位。π的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。
圆周率π的计算历程
圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代一代的数学家为此献出了自己的智慧和劳动。回顾历史,人类对 π 的认识过程,反映了数学和计算技术发展情形的一个侧面。 π 的研究,在一定程度上反映这个地区或时代的数学水平。德国数学史家康托说:"历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。"直到19世纪初,求圆周率的值应该说是数学中的头号难题。为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的。我们可以将这一计算历程分为几个阶段。
实验时期
通过实验对 π 值进行估算,这是计算 π 的的第一阶段。这种对 π 值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出的。在古代世界,实际上长期使用 π =3这个数值。最早见于文字记载的有基督教《圣经》中的章节,其上取圆周率为3。这一段描述的事大约发生在公元前950年前后。其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值。在我国刘徽之前"圆径一而周三"曾广泛流传。我国第一部《周髀算经》中,就记载有圆"周三径一"这一结论。在我国,木工师傅有两句从古流传下来的口诀:叫做:"周三径一,方五斜七",意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7。这正反映了早期人们对圆周率 π 和√2 这两个无理数的粗略估计。东汉时期官方还明文规定圆周率取3为计算面积的标准。后人称之为"古率"。
早期的人们还使用了其它的粗糙方法。如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。如古埃及人应用了约四千年的 4 (8/9)2 = 3.1605。在印度,公元前六世纪,曾取 π= √10 = 3.162。在我国东、西汉之交,新朝王莽令刘歆制造量的容器――律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。现在根据铭文推算,其计算值分别取为3.1547,3.1992,3.1498,3.2031比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计圆田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。
几何法时期
凭直观推测或实物度量,来计算 π 值的实验方法所得到的结果是相当粗略的。
真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他是科学地研究这一常数的第一个人,是他首先提出了一种能够借助数学过程而不是通过测量的、能够把 π 的值精确到任意精度的方法。由此,开创了圆周率计算的第二阶段。
圆周长大于内接正四边形而小于外切正四边形,因此 2√2 < π < 4 。
当然,这是一个差劲透顶的例子。据说阿基米德用到了正96边形才算出他的值域。
阿基米德求圆周率的更精确近似值的方法,体现在他的一篇论文《圆的测定》之中。在这一书中,阿基米德第一次创用上、下界来确定 π 的近似值,他用几何方法证明了"圆周长与圆直径之比小于 3+(1/7) 而大于 3 + (10/71) ",他还提供了误差的估计。重要的是,这种方法从理论上而言,能够求得圆周率的更准确的值。到公元150年左右,希腊天文学家托勒密得出 π =3.1416,取得了自阿基米德以来的巨大进步。
割圆术。不断地利用勾股定理,来计算正N边形的边长。
在我国,首先是由数学家刘徽得出较精确的圆周率。公元263年前后,刘徽提出著名的割圆术,得出 π =3.14,通常称为"徽率",他指出这是不足近似值。虽然他提出割圆术的时间比阿基米德晚一些,但其方法确有着较阿基米德方法更美妙之处。割圆术仅用内接正多边形就确定出了圆周率的上、下界,比阿基米德用内接同时又用外切正多边形简捷得多。另外,有人认为在割圆术中刘徽提供了一种绝妙的精加工办法,以至于他将割到192边形的几个粗糙的近似值通过简单的加权平均,竟然获得具有4位有效数字的圆周率 π =3927/1250 =3.1416。而这一结果,正如刘徽本人指出的,如果通过割圆计算得出这个结果,需要割到3072边形。这种精加工方法的效果是奇妙的。这一神奇的精加工技术是割圆术中最为精彩的部分,令人遗憾的是,由于人们对它缺乏理解而被长期埋没了。
恐怕大家更加熟悉的是祖冲之所做出的贡献吧。对此,《隋书·律历志》有如下记载:"宋末,南徐州从事祖冲之更开密法。以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率:圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。"
这一记录指出,祖冲之关于圆周率的两大贡献。其一是求得圆周率
3.1415926 < π < 3.1415927
其二是,得到 π 的两个近似分数即:约率为22/7;密率为355/113。
他算出的 π 的8位可靠数字,不但在当时是最精密的圆周率,而且保持世界记录九百多年。以致于有数学史家提议将这一结果命名为"祖率"。
这一结果是如何获得的呢?追根溯源,正是基于对刘徽割圆术的继承与发展,祖冲之才能得到这一非凡的成果。因而当我们称颂祖冲之的功绩时,不要忘记他的成就的取得是因为他站在数学伟人刘徽的肩膀上的缘故。后人曾推算若要单纯地通过计算圆内接多边形边长的话,得到这一结果,需要算到圆内接正12288边形,才能得到这样精确度的值。祖冲之是否还使用了其它的巧妙办法来简化计算呢?这已经不得而知,因为记载其研究成果的著作《缀术》早已失传了。这在中国数学发展史上是一件极令人痛惜的事。
中国发行的祖冲之纪念邮票
祖冲之的这一研究成果享有世界声誉:巴黎"发现宫"科学博物馆的墙壁上著文介绍了祖冲之求得的圆周率,莫斯科大学礼堂的走廊上镶嵌有祖冲之的大理石塑像,月球上有以祖冲之命名的环形山……
对于祖冲之的关于圆周率的第二点贡献,即他选用两个简单的分数尤其是用密率来近似地表示 π 这一点,通常人们不会太注意。然而,实际上,后者在数学上有更重要的意义。
密率与 π 的近似程度很好,但形式上却很简单,并且很优美,只用到了数字1、3、5。数学史家梁宗巨教授验证出:分母小于16604的一切分数中,没有比密率更接近 π 的分数。在国外,祖冲之死后一千多年,西方人才获得这一结果。
可见,密率的提出是一件很不简单的事情。人们自然要追究他是采用什么办法得到这一结果的呢?他是用什么办法把圆周率从小数表示的近似值化为近似分数的呢?这一问题历来为数学史家所关注。由于文献的失传,祖冲之的求法已不为人知。后人对此进行了各种猜测。
让我们先看看国外历史上的工作,希望能够提供出一些信息。
1573年,德国人奥托得出这一结果。他是用阿基米德成果22/7与托勒密的结果377/120用类似于加成法"合成"的:(377-22) / (120-7) = 355/113。
1585年,荷兰人安托尼兹用阿基米德的方法先求得:333/106 < π < 377/120,用两者作为 π 的母近似值,分子、分母各取平均,通过加成法获得结果:3 ((15+17)/(106+120) = 355/113。
两个虽都得出了祖冲之密率,但使用方法都为偶合,无理由可言。
在日本,十七世纪关孝和重要著作《括要算法》卷四中求圆周率时创立零约术,其实质就是用加成法来求近似分数的方法。他以3、4作为母近似值,连续加成六次得到祖冲之约率,加成一百十二次得到密率。其学生对这种按部就班的笨办法作了改进,提出从相邻的不足、过剩近似值就近加成的办法,(实际上就是我们前面已经提到的加成法)这样从3、4出发,六次加成到约率,第七次出现25/8,就近与其紧邻的22/7加成,得47/15,依次类推,只要加成23次就得到密率。
钱宗琮先生在《中国算学史》(1931年)中提出祖冲之采用了我们前面提到的由何承天首创的"调日法"或称加权加成法。他设想了祖冲之求密率的过程:以徽率157/50,约率22/7为母近似值,并计算加成权数x=9,于是 (157 + 22×,9) / (50+7×9) = 355/113,一举得到密率。钱先生说:"冲之在承天后,用其术以造密率,亦意中事耳。"
另一种推测是:使用连分数法。
由于求二自然数的最大公约数的更相减损术远在《九章算术》成书时代已流行,所以借助这一工具求近似分数应该是比较自然的。于是有人提出祖冲之可能是在求得盈 二数之后,再使用这个工具,将3.14159265表示成连分数,得到其渐近分数:3,22/7,333/106,355/113,102573/32650…
最后,取精确度很高但分子分母都较小的355/113作为圆周率的近似值。至于上面圆周率渐近分数的具体求法,这里略掉了。你不妨利用我们前面介绍的方法自己求求看。英国李约瑟博士持这一观点。他在《中国科学技术史》卷三第19章几何编中论祖冲之的密率说:"密率的分数是一个连分数渐近数,因此是一个非凡的成就。"
我国再回过头来看一下国外所取得的成果。
1150年,印度数学家婆什迦罗第二计算出 π= 3927/1250 = 3.1416。1424年,中亚细亚地区的天文学家、数学家卡西著《圆周论》,计算了3×228=805,306,368边内接与外切正多边形的周长,求出 π 值,他的结果是:
π=3.14159265358979325
有十七位准确数字。这是国外第一次打破祖冲之的记录。
16世纪的法国数学家韦达利用阿基米德的方法计算 π 近似值,用 6×216正边形,推算出精确到9位小数的 π 值。他所采用的仍然是阿基米德的方法,但韦达却拥有比阿基米德更先进的工具:十进位置制。17世纪初,德国人鲁道夫用了几乎一生的时间钻研这个问题。他也将新的十进制与早的阿基米德方法结合起来,但他不是从正六边形开始并将其边数翻番的,他是从正方形开始的,一直推导出了有262条边的正多边形,约4,610,000,000,000,000,000边形!这样,算出小数35位。为了记念他的这一非凡成果,在德国圆周率 π 被称为"鲁道夫数"。但是,用几何方法求其值,计算量很大,这样算下去,穷数学家一生也改进不了多少。到鲁道夫可以说已经登峰造极,古典方法已引导数学家们走得很远,再向前推进,必须在方法上有所突破。
17世纪出现了数学分析,这锐利的工具使得许多初等数学束手无策的问题迎刃而解。 π 的计算历史也随之进入了一个新的阶段。
分析法时期
这一时期人们开始摆脱求多边形周长的繁难计算,利用无穷级数或无穷连乘积来算 π 。
1593年,韦达给出
这一不寻常的公式是 π 的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 π 值。
接着有多种表达式出现。如沃利斯1650年给出:
1706年,梅钦建立了一个重要的公式,现以他的名字命名:
再利用分析中的级数展开,他算到小数后100位。
这样的方法远比可怜的鲁道夫用大半生时间才抠出的35位小数的方法简便得多。显然,级数方法宣告了古典方法的过时。此后,对于圆周率的计算像马拉松式竞赛,纪录一个接着一个:
1844年,达塞利用公式:
算到200位。
19世纪以后,类似的公式不断涌现, π 的位数也迅速增长。1873年,谢克斯利用梅钦的一系列方法,级数公式将 π 算到小数后707位。为了得到这项空前的纪录,他花费了二十年的时间。他死后,人们将这凝聚着他毕生心血的数值,铭刻在他的墓碑上,以颂扬他顽强的意志和坚韧不拔的毅力。于是在他的墓碑上留下了他一生心血的结晶: π 的小数点后707位数值。这一惊人的结果成为此后74年的标准。此后半个世纪,人们对他的计算结果深信不疑,或者说即便怀疑也没有办法来检查它是否正确。以致于在1937年巴黎博览会发现馆的天井里,依然显赫地刻着他求出的 π 值。
又过了若干年,数学家弗格森对他的计算结果产生了怀疑,其疑问基于如下猜想:在 π 的数值中,尽管各数字排列没有规律可循,但是各数码出现的机会应该相同。当他对谢克斯的结果进行统计时,发现各数字出现次数过于参差不齐。于是怀疑有误。他使用了当时所能找到的最先进的计算工具,从1944年5月到1945年5月,算了整整一年。1946年,弗格森发现第528位是错的(应为4,误为5)。谢克斯的值中足足有一百多位全都报了销,这把可怜的谢克斯和他的十五年浪费了的光阴全部一笔勾销了。
对此,有人曾嘲笑他说:数学史在记录了诸如阿基米德、费马等人的著作之余,也将会挤出那么一、二行的篇幅来记述1873年前谢克斯曾把 π 计算到小数707位这件事。这样,他也许会觉得自己的生命没有虚度。如果确实是这样的话,他的目的达到了。
人们对这些在地球的各个角落里作出不懈努力的人感到不可理解,这可能是正常的。但是,对此做出的嘲笑却是过于残忍了。人的能力是不同的,我们无法要求每个人都成为费马、高斯那样的人物。但成为不了伟大的数学家,并不意味着我们就不能为这个社会做出自己有限的贡献。人各有其长,作为一个精力充沛的计算者,谢克斯愿意献出一生的大部分时光从事这项工作而别无报酬,并最终为世上的知识宝库添了一小块砖加了一个块瓦。对此我们不应为他的不懈努力而感染并从中得到一些启发与教育吗?
1948年1月弗格森和伦奇两人共同发表有808位正确小数的 π 。这是人工计算 π 的最高记录。
计算机时期
1946年,世界第一台计算机ENIAC制造成功,标志着人类历史迈入了电脑时代。电脑的出现导致了计算方面的根本革命。1949年,ENIAC根据梅钦公式计算到2035(一说是2037)位小数,包括准备和整理时间在内仅用了70小时。计算机的发展一日千里,其记录也就被频频打破。
ENIAC:一个时代的开始
1973年,有人就把圆周率算到了小数点后100万位,并将结果印成一本二百页厚的书,可谓世界上最枯燥无味的书了。1989年突破10亿大关,1995年10月超过64亿位。1999年9月30日,《文摘报》报道,日本东京大学教授金田康正已求到2061.5843亿位的小数值。如果将这些数字打印在A4大小的复印纸上,令每页印2万位数字,那么,这些纸摞起来将高达五六百米。来自最新的报道:金田康正利用一台超级计算机,计算出圆周率小数点后一兆二千四百一十一亿位数,改写了他本人两年前创造的纪录。据悉,金田教授与日立制作所的员工合作,利用目前计算能力居世界第二十六位的超级计算机,使用新的计算方法,耗时四百多个小时,才计算出新的数位,比他一九九九年九月计算出的小数点后二千六百一十一位提高了六倍。圆周率小数点后第一兆位数是二,第一兆二千四百一十一亿位数为五。如果一秒钟读一位数,大约四万年后才能读完。
不过,现在打破记录,不管推进到多少位,也不会令人感到特别的惊奇了。实际上,把 π 的数值算得过分精确,应用意义并不大。现代科技领域使用的 π 值,有十几位已经足够。如果用鲁道夫的35位小数的 π 值计算一个能把太阳系包围起来的圆的周长,误差还不到质子直径的百万分之一。我们还可以引美国天文学家西蒙·纽克姆的话来说明这种计算的实用价值:
"十位小数就足以使地球周界准确到一英寸以内,三十位小数便能使整个可见宇宙的四周准确到连最强大的显微镜都不能分辨的一个量。"
那么为什么数学家们还象登山运动员那样,奋力向上攀登,一直求下去而不是停止对 π 的探索呢?为什么其小数值有如此的魅力呢?
这其中大概免不了有人类的好奇心与领先于人的心态作怪,但除此之外,还有许多其它原因。
奔腾与圆周率之间的奇妙关系……
1、它现在可以被人们用来测试或检验超级计算机的各项性能,特别是运算速度与计算过程的稳定性。这对计算机本身的改进至关重要。就在几年前,当Intel公司推出奔腾(Pentium)时,发现它有一点小问题,这问题正是通过运行 π 的计算而找到的。这正是超高精度的 π 计算直到今天仍然有重要意义的原因之一。
2、 计算的方法和思路可以引发新的概念和思想。虽然计算机的计算速度超出任何人的想象,但毕竟还需要由数学家去编制程序,指导计算机正确运算。实际上,确切地说,当我们把 π 的计算历史划分出一个电子计算机时期时,这并非意味着计算方法上的改进,而只是计算工具有了一个大飞跃而已。因而如何改进计算技术,研究出更好的计算公式,使公式收敛得更快、能极快地达到较大的精确度仍是数学家们面对的一个重要课题。在这方面,本世纪印度天才数学家拉马努扬得出了一些很好的结果。他发现了许多能够迅速而精确地计算 π 近似值的公式。他的见解开通了更有效地计算 π 近似值的思路。现在计算机计算 π 值的公式就是由他得到的。至于这位极富传奇色彩的数学家的故事,在这本小书中我们不想多做介绍了。不过,我希望大家能够明白 π 的故事讲述的是人类的胜利,而不是机器的胜利。
3、还有一个关于 π 的计算的问题是:我们能否无限地继续算下去?答案是:不行!根据朱达偌夫斯基的估计,我们最多算1077位。虽然,现在我们离这一极限还相差很远很远,但这毕竟是一个界限。为了不受这一界限的约束,就需要从计算理论上有新的突破。前面我们所提到的计算,不管用什么公式都必须从头算起,一旦前面的某一位出错,后面的数值完全没有意义。还记得令人遗憾的谢克斯吗?他就是历史上最惨痛的教训。
4、于是,有人想能否计算时不从头开始,而是从半截开始呢?这一根本性的想法就是寻找并行算法公式。1996年,圆周率的并行算法公式终于找到,但这是一个16进位的公式,这样很容易得出的1000亿位的数值,只不过是16进位的。是否有10进位的并行计算公式,仍是未来数学的一大难题。
5、作为一个无穷数列,数学家感兴趣的把 π 展开到上亿位,能够提供充足的数据来验证人们所提出的某些理论问题,可以发现许多迷人的性质。如,在 π 的十进展开中,10个数字,哪些比较稀,哪些比较密? π 的数字展开中某些数字出现的频率会比另一些高吗?或许它们并非完全随意?这样的想法并非是无聊之举。只有那些思想敏锐的人才会问这种貌似简单,许多人司空见惯但却不屑发问的问题。
6、数学家弗格森最早有过这种猜想:在 π 的数值式中各数码出现的概率相同。正是他的这个猜想为发现和纠正向克斯计算 π 值的错误立下了汗马功劳。然而,猜想并不等于现实。弗格森想验证它,却无能为力。后人也想验证它,也是苦于已知的 π 值的位数太少。甚至当位数太少时,人们有理由对猜想的正确性做出怀疑。如,数字0的出现机会在开始时就非常少。前50位中只有1个0,第一次出现在32位上。可是,这种现象随着数据的增多,很快就改变了:100位以内有8个0;200位以内有19个0;……1000万位以内有999,440个0;……60亿位以内有599,963,005个0,几乎占1/10。
其他数字又如何呢?结果显示,每一个都差不多是1/10,有的多一点,有的少一点。虽然有些偏差,但都在1/10000之内。
7、人们还想知道: π 的数字展开真的没有一定的模式吗?我们希望能够在十进制展开式中通过研究数字的统计分布,寻找任何可能的模型――如果存在这种模型的话,迄今为止尚未发现有这种模型。同时我们还想了解: π 的展开式中含有无穷的样式变化吗?或者说,是否任何形式的数字排列都会出现呢?著名数学家希尔伯特在没有发表的笔记本中曾提出下面的问题: π 的十进展开中是否有10个9连在一起?以现在算到的60亿位数字来看,已经出现:连续6个9连在一起。希尔伯特的问题答案似乎应该是肯定的,看来任何数字的排列都应该出现,只是什么时候出现而已。但这还需要更多 π 的数位的计算才能提供切实的证据。
8、在这方面,还有如下的统计结果:在60亿数字中已出现连在一起的8个8;9个7;10个6;小数点后第710150位与3204765位开始,均连续出现了七个3;小数点52638位起连续出现了14142135这八个数字,这恰是的前八位;小数点后第2747956位起,出现了有趣的数列876543210,遗憾的是前面缺个9;还有更有趣的数列123456789也出现了。
如果继续算下去,看来各种类型的数字列组合可能都会出现。
拾零: π 的其它计算方法
在1777年出版的《或然性算术实验》一书中,蒲丰提出了用实验方法计算 π 。这个实验方法的操作很简单:找一根粗细均匀,长度为 d 的细针,并在一张白纸上画上一组间距为 l 的平行线(方便起见,常取 l = d/2),然后一次又一次地将小针任意投掷在白纸上。这样反复地投多次,数数针与任意平行线相交的次数,于是就可以得到 π 的近似值。因为蒲丰本人证明了针与任意平行线相交的概率为 p = 2l/πd 。利用这一公式,可以用概率方法得到圆周率的近似值。在一次实验中,他选取 l = d/2 ,然后投针2212次,其中针与平行线相交704次,这样求得圆周率的近似值为 2212/704 = 3.142。当实验中投的次数相当多时,就可以得到 π 的更精确的值。
1850年,一位叫沃尔夫的人在投掷5000多次后,得到 π 的近似值为3.1596。目前宣称用这种方法得到最好结果的是意大利人拉兹瑞尼。在1901年,他重复这项实验,作了3408次投针,求得 π 的近似值为3.1415929,这个结果是如此准确,以致于很多人怀疑其实验的真伪。如美国犹他州奥格登的国立韦伯大学的L·巴杰就对此提出过有力的质疑。
不过,蒲丰实验的重要性并非是为了求得比其它方法更精确的 π 值。蒲丰投针问题的重要性在于它是第一个用几何形式表达概率问题的例子。计算 π 的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。
在用概率方法计算 π 值中还要提到的是:R·查特在1904年发现,两个随意写出的数中,互素的概率为6/π2。1995年4月英国《自然》杂志刊登文章,介绍英国伯明翰市阿斯顿大学计算机科学与应用数学系的罗伯特·马修斯,如何利用夜空中亮星的分布来计算圆周率。马修斯从100颗最亮的星星中随意选取一对又一对进行分析,计算它们位置之间的角距。他检查了100万对因子,据此求得 π 的值约为3.12772。这个值与真值相对误差不超过5%。
通过几何、微积分、概率等广泛的范围和渠道发现 π ,这充分显示了数学方法的奇异美。 π 竟然与这么些表面看来风马牛不相及的试验,沟通在一起,这的确使人惊讶不已。
“数学英雄”欧拉的天才之作—欧拉公式,为啥被称为宇宙第一公式?
因为这个公式的五个参数,是数学中最常用的常数,将此参数归纳到一个数学公式里面,非常有魅力!
简单说说你在生活中见过的应用计算机的例子?
生活中只有计算机的例子有很多,在日常生活中,我们在家庭里面用计算机网上购物,在超市里面收货员用计算机进行结算,在银行里面用计算机来办理业务,现在生活中都在用计算机,计算机的应用越来越广泛。
计算器对运算能力的影响
随着21世纪的到来,以计算机和互联网为代表的当代信息技术,正在以惊人的速度改变着人们的生存方式和学习方式,也迫切需要我们改变教育方式,教育课程改革要反映信息技术所引发的变革,就必须在教学课程理念,教学课程的设计与实施中与信息技术进行整合。
一、数学技术——信息技术的技术支撑点
技术就是运用知识、工具和技能解决、探索一些实际问题,用以扩展人的能力的手段与方法体系之和。技术是一个技术性过程,它是人们在做、制造和实施的不断演化过程中提高技术水平、发挥技术功效(美国2061计划);技术是人们认识世界和认识自己我的一种体现,它是随着人类社会的进步而不断进步,是人类文明的基本象征,也是推动历史发展的一种动力源。从古代的钻木取火技术、近代的蒸汽机技术,到今天的信息社会中的信息技术,从扩充人的体力的技术到如今扩充人的脑力的技术,无不体现出技术的价值和它所承载的人类智慧。综观技术的发展,人类为了更好地生存与发展,创造了许许多多的技术,它们或多或少都与数学的发展有着不可分割的联系,可以说是相生相伴。人类最初掌握的比较完善的技术之一可以说是记数技术,从几万年前的刻痕记数(以树干、骨头为物质载体,把数刻在其上记事)、结绳记数(用草绳打结记事)、石子记数、手指记数,到近代用的纸笔记数、现代的计算机计数,这些记数方法的不断改进与演化已经形成了今天相当完善的记数制与计算技术。这些计算技术也就成为数学技术的主体,而承担其实施的载体就是电子计算机。现代计算机就是神奇的0与1的组合体。要是没有德国数学家莱布尼茨(1646~1716)发明的二进制,也就不可能在今天计算机的出现。正是由于数学以它惊人的特性与人类的发展息息相关,以独特的身份介入技术的发展并融入其中,而且以它的精确性和内在美体现出它在方方面面的有效性,那么数学也就理所当然地成为关键技术的关键,成为信息技术的支撑点。
数学技术一般指实现数学运算、推理、应用的信息技术,它总是伴随着数学的进步而进步。数学的原理、思想、方法与技术结合而形成的数学技术本质上就是一种高科技。离开了数学技术,信息技术将成为无源之水,也就谈不上发展了。
数学技术是数学与技术以灵巧方式组合成的二者不可分割的和谐整体。从某种角度讲。,数学上的每一次重大的发展和突破都是技术有大的发展与进步的前奏,而事实是数学的发展往往超前于重大技术的发现而走在前面。数学的追求与技术(科学)发展的目标是相一致的,都追求简单、清晰、方便、可操作、易于掌握。其实,现阶段数学总是任何计算机仿真的核心,数学通过对复杂现象的仿真建模,借助计算机对数据流进行缩成和可视化,将有助于人们把事情做得更好、更快、更安全、更便利。数学技术正在以不同的形态广泛地应用于现实生活世界的各个方面。检查身体的CT扫描技术,车辆、飞机的模拟、设计和控制技术,金融证券价值的估算技术,天气和气象的预测技术,电子设计电动化以及生物工程等技术,其核心都是数学技术。数学技术正是依附于计算机来显现它的威力,而计算机正是依靠数学技术得以工作与革新换代。
“信息技术是指对信息进行采集、传输、存储、加工、交流、应用的手段和方法的体系。”信息技术按表现形态的不同分为硬技术与软技术,前者指各种硬件设备,即一种物化形态的技术;后者指有关信息获取与处理的各种知识、方法与技能,即一种智能形态的技术。前者就是将人类的一切信息都以计算机语言的0或1的二进制来表达,这是人类文明在数学基础上的一次史无先例的科学整合,是影响人类自下而上和发展的巨大科学成就,而最具代表性的计算机的设计者就是20世纪最著名的数学家冯·诺依曼;后者所指的信息获取与处理的知识、方法、技能都是与数学技术密不可分的,从某种程度上看,就是数学化的过程。由此可见,数学技术是信息技术中最为关键的技术,是信息技术的技术支撑点。
二、信息技术与课程整合
信息技术课程整合有两个指向:一是纵向整合,将技术融合于一门课程;二是横向整合,通过技术促进多学科的综合。
进行信息技术与课程整合,必须建立全新的教育关系。技术是关系的基础,信息技术可以改变传统的师生关系。在技术不发展的时代,教师是信息的拥有者,学生是接受者。在这样的条件下,师生关系就是传统的以教师的教为主这样一种关系。信息技术改变了这一切,首先,现代信息技术改变了社会中的信息分布状态和人们对它的拥有关系,造成了信息的多源性、易得性和可选性,从而改变了人们之间的教育关系。在这种情况下,我们开展信息技术与课程改革,首先就要从突破传统的教学模式和教育关系,建立一种全新的教学模式,真正让学生成为自主的学习者,而教师则起到引导、帮助、导向、组织的作用。
信息技术整合到课程中,将对传统的课程产生结构性的影响,传统的稳定的课程结构将被破坏,而代之以面向过程的课程框架。在这样的课程结构中,信息技术通过对学习资源的支撑、对学习过程的支持和对贯穿于整个学习过程的评价的支持,真正实现了与课程的整合。
信息技术整合到课程中,技术只是作为课程中的一个要素,对课程的过程、环境,学习的选择、交互,学习活动和学习评估提供广泛的支持。以课程的核心因素为中心,信息技术整合课程包含以下这些要素:
·注重于基本技能、内容和高级思维技能;
·围绕大的主题和有意义的概念组织学习;
·在不同课程领域间建立连接;
·为学生提供运用所学技能的机会;
·将可信的评估作为学习的综合组成部分;
·将真实生活的经验包容其间;
·吸引学生、激发学生,给学生一定的挑战性;
·适应广泛的学习风格和多重智能;
·提供对内容的更深入的理解;
·提供小组学习机会;
·将技术作为学习的综合组成部分。
信息技术整合课程模式有其鲜明的特色,一方面强调学生的个性发展,另一方面也强调学习的合作;重视知识获取的过程,也强调个人经验基础上的知识建构。在学习的方式上,信息技术整合模式以学生主动探究的学习方式为主,而作为载体的课程,则可以有许多种表现形式,其中之一,就是本文要介绍的主题学习模式。
与目前关于整合课程的研究一样,主题课程是建立在建构主义学习基础上的。其理论前提是,学习者在自己概念的基础上,在适当指导的基础上,从自己过去的经验和现在的所学当中建立的意义才能最好地理解。
三、信息技术——数学及数学技术发展与应用的平台
现代信息技术的发展、应用,把数学以技术化的方式快速地传送到人们日常生活的各个领域,使得数学对科学、技术、社会的发展起到了更加巨大的推动作用,同时也促使常数技术的不断发展。数学技术的发展使得图形计算器、数学软件的功能增长,用于计算机、解方程、绘图像、解微积分方程、因式分解、数据统计、数值计算、符号演算、机器证明、图形演示以及进行思维实验都能以更加简洁快捷的方式进行,而且使得计算机的验证功能、编程功能、联网功能更加强大。由于数字化经济、数字信息处理以及大量的探索性数据分析、观察、实验、模拟与计算技术密不可分,因而数学就同时具有科学和技术的双重身份,这也就从某一侧面反映了数学的实质性内涵。由于计算机的发展。使人们可以解决非常复杂的非线性问题,已经超越了常规解决问题的方法,利用计算机的支撑能揭示未来数学的现象,能给数学以强大的推动力,计算机不仅为数学应用提供了解答,而且赋予人们以灵感和直觉,数学实验室软件能够动态地揭示知识的构造,并形象地对数学知识进行表述,而且能动态地呈现问题产生的过程,并自动解决,相互推理。计算机的应用对数学家而言犹如望远镜对于天文学家、显微镜对生物学家,给数学家进行数学研究和创造提供了锐利的武器。
信息技术为数学的发展注入了活力,在计算机面前由于好多知识变成动态化,可以激发人们对数学的热爱,引发人们展开想象的翅膀不断思索与追求,使得数学现在人们面前。由于计算机的影响,数学正在加速改变着它的内容、结构和方法,也加速改变着人们对数学的理解方法,这是因为几何现象的实验成为可能,从数学上看,迄今为止代数的表现形式在书写表示方面有非常有利的一面,几何不是记号,而仅仅是你头脑中的某个几何对象——图形,表现的是更为抽象和复杂的数学概念,借助计算机就可以传送出比现在更多、更丰富的几何内容,如可以展现一些分形模型、一些动态的复杂曲线等。用计算机进行科学计算是计算机最为基本的功能,它可以在很短的时间内收集和处理大量的数据,作出判断,形成公式,构建理论;计算机可用于作数学实验,如火箭发射、核弹爆炸、军事演示、飞机汽车桥梁设计等都是借助计算机进行实验的;计算机同时还可以进行数学证明,如四色定理在1976年被两闰美国数学家用计算机予以证明,我国数学家吴文俊也在计算机上用代数方法证明了欧氏几何已知的一切定理。
数学是一个非常美的领域,这是因为数学的主要部分是由人类的心灵构成的。你可以自由探索自己心目中的数学世界,正是这种自由探索才是数学美的力量所在。计算机技术为数学这种美的展现提供了一个丰富的平台,给人们以丰富的探索与实验空间。数学是对现实世界的一种思考、描述、刻画、解释、理解,其目的是发现现实世界中所蕴藏的一些数与形的规律,为社会的进步与人类的发展服务。正是有了信息技术,加快了人类认识自然与人类自身的速度与质量,基因工程就是一个典型的例题。在信息技术条件下,许多新的数学思想与方法不断突破,数学结构与内容的不断丰富,一些新的学科——近代数学技术、运筹优化、工程自控、信息论、数理统计、计算机科学、模糊识别等也就应运而生。计算机与数学的结合,使得数学开拓了研究领域,成为数学探索的新平台。
数学家们总是用他们的思想眼光来审视出现于数学研究所有领域中的抽象的目标与过程。计算机技术的巨大进步已经使得把这些模、主观和只能在头脑中想象的抽象的对象、目标、过程外在化而变得很容易,也就是用精确、客观和其他人可以共享的可视化来表现、演示,从而使思维及过程视觉化。数学对象可以用计算机来表示、展现,从而使人们对数学对象产生新的认识,由静到动、构形、成形,进而进行操作、实验,特别是几何对象——曲线、曲面、多面体,而成为任何计算机仿真的核心。在计算机环境下,人们更多的是用渐近方法、数值方法去探究数学规律,进行建模和科学计算。如利用计算机可以对进行小数点几十亿位以后的计算,用来检验人类的智慧水平。同样好多在数学领域无法实现的一些设想在计算机环境下正在不断实现,如几千年来人们梦想的数学定理的机器证明的实现就是一个极具代表性的例证。由于计算机的介入使得数学的应用与普及不断深入,已逐渐渗透到各个学科,取得了惊人的成绩,数学价值与功能的不断挖掘促使人们对数学的认识更加全面深刻。
四、信息技术——数学课程整合的助推器
随着21世纪的到来,以计算机和互联网为代表的当代信息技术,正在以惊人的速度改变着人们的生存方式和学习方式,也迫切需要我们改变教育方式。为了迎接信息技术的挑战,为了中化民族的复兴,为了每位学生的发展,新一轮基础教育课程改革正在全面展开。正是由于数学、数学教育与信息技术有着天然的不可分割的依存关系,那么在当前基础教育课程改革的新形势下,数学课程的改革就显得意义更加深远和重大。现代信息技术的发展一方面为数学教育的普及与传播提供了得天独厚的土壤,另一方面也对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。数学课程改革要反映信息技术所引发的变革,就必须在数学课程理念、数学课程的设计与实施中与信息技术进行整合。
1、信息技术与数学课程理念的整合
理念是理性化的一些观念,具有稳定性、长效性、持续性、指导性。形成正确的数学课程理念是更好从事数学教育的逻辑起点,因为理念在数学教育活动过程中具有统驭作用。在义务教育阶段的数学课程标准中,基本理念专门有一个方面来阐述现代信息技术在数学课程中的地位,其他的几个方面也间接或直接地涉及到信息技术。在高中数学课程标准的框架设想中也高度重视信息技术对数学课程的影响,认为应不仅重视利用信息技术来呈现课程内容,更应重视信息技术与课程内容的有机整合。设想中提到要在课程中使用科学型计算器以及各种数学教育平台,加速数学与信息技术的结合。在内容上,要突出算法在整个数学发展中的独特作用,使算法成为理解数学发展的重要线索,力求把算法融入到数学课程的各个部分。正是因为信息技术已经融化到数学教育的深层结构,融入数学教育的知识体系,成为传播内容的最佳工具和学生探究知识、体验数学、感受知识的中介,在可预见的将来,信息技术将使数学教育发生一些实质性的变化,数学教育的面貌将会焕然一新,数学教育的实践与数学教育的理论研究将会更加深入。
信息技术的发展改变了人类学习与生存发展的环境,也改变了几个世纪数学教学、数学学习的方式。由于它对人发展的重要性,迫使人们不断思索数学与现实的切合度;更是因为信息技术与数学技术的千丝万缕的联系,使人们认识到它在数学课程结构中的重要性。信息技术不仅被看做是教师教的工具、是学生学的工具、是学生的认识工具与情感发展工具,而且也是数学教育工作才在建构数学内容体系时首先考虑的因素,进而引发人们重新思考数学课程的基础性、多样性、选择性以及如何在信息技术条件下使学生积极主动地学习,在打好基础与追求创新中不断提高学生的数学思维能力,更进一步促使人们思考在数学教育过程中如何利用与发展学生的信息技术能力,如何处理好师生关系。在信息技术条件下,必将改变人们对数学的内容、形式、应用、人文价值以及评价的认识与看法,可见信息技术与数学课程理念的整合是数学教育发展的必然。
2、信息技术与数学课程内容选取的整合
信息技术与数学课程内容的整合可以打破数学知识间的条块分割局面,使传统代数、几何、三角分家的体系成为一个有机的整体,打通知识融合的道路。义务教育阶段,数学课程标准按不同层次将学生必须学的数学知识分为数与代数、空间与图形、统计与概率以及实践与综合运用四部分,然后按不同学段整合成学生的学习领域。而这些内容标准只给出具体目标,不直接对教学具体内容、教材编写体系、教学先后顺序等问题作出硬性统一的规定,使学生所这和教师所教富有弹性和力量。在当今信息技术迅猛发展的时代,各种信息扑面而来,越来越需要人们综合素质的提高,需要学生动用各种知识、方法和手段来获取信息,特别是一些数据信息的处理,借用计算机来过错成更加快捷方便,使是与我们不能分离的数显得更具应用价值。即使对一些烦琐的计算、方程的求解、递归、迭代,也能在计算机上实现,使得日常生活中一些重要的数学知识以快捷方便的形式出现在课堂上,成为学生学习的内容,大大丰富了学生的知识疆界。利用计算机可以更方便地寻找数与形的规律,使得观察与验证得以进行,使得数与形的结合真正从理论走向实践。正是借助于计算机,才使得一些现代数学的内容能够及时地渗透到中学数学内容体系之中,如分形、混沌问题、孤立子等非线性知识进入学生课堂。同时才有可能把原先一些费劲的烦琐计算问题简化下来,使学生有更多的时间考虑如何探索获取更多的知识,使得有更多的内容以方便的形式介入学生的学习过程中,真正实现数学内容的弹性化、学生发展空间的扩大化;使学生有机会接触一些有重要价值的数学知识,如高中数学中设计逻辑框图让计算机去执行、用计算机符号系统表示数学内容、用计算机语言表达数学命题、用程序和算法表示数学过程,“IF…,THEN…”这样的语句可以在数学课程中出现等。
信息技术的介入使得数学知识的结构发生了一些变化,可以使学生认识数学知识的组成要素,特别是对它的一些基本属性进行得新认识,使知识更多的以过程的方式进入学生的学习生活中。而从事编写教材中的一些知识呈现方式动态化、可操作化,更多的是让学生去试验。使得师生的思维方工莉以不断扩展,人们更有信心和力量。
3、信息技术与数学教学的整合
信息技术与数学课程的整合最直接的就是教学方式的变革与学习方式的变革。在信息技术条件下,引起数学教育工作者更多的就是对教学观的反思与课堂结构变化的关注。信息技术环境下所发生的最根本的变化之一是教师作用与角色、学生学习环境的变化,教师不再是知识的提供者、权威和智慧的源泉,而成为学生进行探索和发展的伙伴、援助者和指导者、促进者、引导者。学生不仅仅是从听与所作业中获取知识,而是在自主探索、合作交流的情境中进行学习;学生不再是知识的被动接受者,而是知识的主动探索者,问题讲座的启动者和调整者,问题解决的参与者、经历者,使学生获得更多的学习机会与权利。
信息技术对数学的学习者与教学者都将产生深远而又持久的影响,这将是革命性的一场变革。学习方式(地点、时间、环境、资源)发生了变化,教学内容与学生的发展的关联性将无比接近,教学模式将更加体现数学课程改革的新理念,使人人都能得到发展。由于有信息技术作为学习的平台,就可以满足多样性、个性化、区别化的需求。学生可以利用的资源更加丰富,会更加积极地参与学习过程,探索与不断思索才能实现。对教师而言,原先在教学中起主导作用的教材、教参、黑板、粉笔等载体和手段现在可以被以计算机为主要载体所营造的教学环境所代替,如多媒体学习系统、资料库等,这样教师不仅有灵活选择一些素材的余地,而且可以大胆创设一些教学环境,设计更加开放互动的学习活动,参与式、活动式、主体性教学得到实现,师生关系得以改变,成为真正的合作者。
总之,21世纪是信息时代,是科学技术飞速发展的时代,随着信息处理手段的不断进步,对教育内容、教学方法、教育体制和教育思想产生了巨大的影响。教师作为信息的主要传播者,掌握现代信息技术并与专业教学有机整合已有是教师的最基本的技能,同时现代信息技术还是新时代教师的主要工作手段和工具之一。多媒体教学、远程教学已经成为重要的教学方式与手段。由于这些手段的应用,教学效率大大提高,传授知识的广度和深度大大拓展。由于这些手段的应用,使传统教学中以教师为中心转变成为以学生为中心,学生成为认知主体,经过感知、筛选、归类、概括、收集、重组等一系列心理活动和交互学习活动,形成与发展自身的知识结构,突出了学习者的自主性和个性化。生动活泼的教学活动和前所未有的高度的可视化教学内容呈现,要求教师必须尽快适应这一挑战。
信息与数学教学的有机结合,为数学教学改革增添了一种新型的教学手段,由于数图结合,手眼并用的特点及其模拟、反馈、个别指导、分层练习和动画的内在感染力,所以具有极大的吸引力,通过教学实践,使我认识到,只要全体教师共同努力,去开发、去研究、去探索、去实践,数学教学就会借助现代信息技术,开创出一片新天地!信息技术提供了理解、探索数学的平台,把数学变得容易理解,使得数学走向生活,走向现实,更加情境化,使得数学教学更加生动活泼,真正从书本中、课堂上、考试中走出来,回到数学教学的本体上来。利用技术之间的交互作用,创设逼真的数学学习情境,用录像、影碟以及计算机软件的方式呈现数学问题,以视觉形式出现比以文本的形式出现使得数学材料更具有活动性、可视性和空间立体感,而且易于与其他学科相结合,使得数学知识与其他知识融通起来,进而使学生深刻全会数学的作用与价值,感悟数学的真谛,真正经历数学化的过程,共享学习收获,从中真切地感受数学的优美、力量、统一性。
数学文化与生活3000字论文
数学文化
人类共同的精神财富——数学,数学是人类智慧的结晶,它表达了人类思维中生动活泼的意念,表达了人类对客观世界深入细致的思考,以及人类追求完美和谐的愿望。
早在古希腊时代,哲学家柏拉图把数学看作是文化的最高理想。他说:“几何学可以将灵魂引向真理,并且创造出理性精神”。他认为学习数学不只是为了求真,也是为了求善、求美。他认为人通过研究几何同时也不断地塑造自己,使自己成为更高尚、更丰富、也更有力量的人。既人们在认识宇宙同时,也认识人类自己。在这个认识过程中,数学起着独特的作用。现在它几乎是任何科学都不可缺少的,它是现代科学技术的语言和工具,它的成果为众多学科所共识,积极推动着这些学科理论的建立和深化,它的思维方式和方法渗透到各学科,为这些学科的发展增添了活力。
数学追求一种完全确定、完全可靠的知识。数学的对象必须是明确无误的概念,作为以推理为出发点的命题必须明确、清晰,推理过程的每一步骤都必须明确可靠、容不得半点的含糊,整个认识过程必须前后一贯而不容许自相矛盾。当然,任何一个法律文件、一篇有说服力的学术文章也必须概念清晰、逻辑严谨,但是数学对知识可靠性的要求更高、更明确。正因为如此,数学方法成为人们一种典范的认识方法,帮助人们正确地、客观地认识宇宙和人类自己。几千年来,人类的思想发生了巨大变化,人类的知识在不断地增长。而在由历史积累而形成的人类知识文化宝藏中,数学思想和方法却一直延续发展
了几千年,表现出了强大的生命力。
数学不断地追求最简单、最深层次这是认识的根本。用简洁的数学公式来表示复杂的事物、理解变化的客观规律。在科学技术领域内,人们现在己经能习惯地用非常简洁的数学公式来表示牛顿定律,以此来描述物体多种多样的运动,解释各种现象,同时借助于数学探求事物的机理,预测事物未来的发展变化,探求超出人类感官所及的宇宙的根本。人们借助计算机通过建立数学模型进行数学计算,在数学思想方法的启发和帮助下,解决各式各样的问题。人们在认识客观世界的探索中越来越相信,世界的合理性可以用数学来描述。
数学不仅研究客观世界的数量关系和空间形式,而且也研究它自己。数学史中出现过的一个又一个悖论,记录了数学在研究自身的过程中所经历的一次又一次的危机,危机似乎动摇了数学的基础,而数学正是在不断严格地审视自己、不断地克服自身一个又一个矛盾的过程中夯实了自己的基础,使之变得更为扎实、牢靠。一些公理化体系就是数学对自己的基础出现多次“危机”后深思熟虑的结果。在探讨数学自身的过程中,也形成了像数理逻辑这样的数学新分支,推动了数学自身的发展。数学发展的历史正是体现了人类追求真理而不断探索的精神。
数学的基础是逻辑和直觉、分析和推理、共性和个性,这种思维方式是数学外在的表现。而实质上也和其他文化领域一样,其自身的发展受到不同的时代精神、不同的思维方式的影响。反过来它也影响着人的精神和思维,影响一个民族文化进步。解析几何和微积分的
创立,使变量成为数学的研究对象。数学思想、内容、方法上的革新,使数学的面貌焕然一新。而数学研究运动、变化的思想和方法,以及数学所取得的进展,对打破科学研究中形而上学的枷锁,把辩证法引入到科学的思维中,起到了推波助澜的作用。今天,恐怕没有一个有文化的人不懂得“增长速度”,“变化率”的含义,人们己经习惯从运动和变化的观点来研究事物。数学促进了几乎所有学科的发展,直接或间接地影响了每一个有文化的人的思维。影响人类的精神生活,提高和丰富了人类的整个精神文明水平。
(2)数学对人的文化素养影响
面对飞跃发展的科学技术,人必须具备必要的数学知识和技能,以训练心智、陶冶情操,更好的理解周围的世界,从而更客观的认识人类社会。例如“今年前六个月的居民存款比去年同期增速下降1个百分点。”“今天降水概率是50%”。“信息高速公路”、“数字信息”等他们的含义都是什么?数学对人的文化素质的影响,至少表现在如下几个方面:
有利于培养严谨的思维方式。尽管大多数人将来不会成为数学家,但是条理性、逻辑性作为一种文化素质对人们将来从事任何一种职业都是需要的。同时,数学思维能力的培养对人的智力发展起着关键的作用。如圆是一个完美的图形,可用方程来表示,我们可以从这个方程中找出圆的所有美妙的性质,进一步还可以用方程来表示球,那么我们为什么不考虑下列方程以及。仅仅靠类比就使我们从三维空间进入了高维空间,从有形进入了无形,从现实进入了虚拟世
界。
有利于培养人的创新精神。数学是人类理性文明高度发展的结晶,又是人类创新的锐利工具。无论数学知识的应用或是数学知识的发展,都需要研究新问题,根据实际情况做出恰如其分的分析,并由此找到解决问题的途径。这就体现出人的巨大创造力。
有利于培养科学的审美观。人对美的理解各不相同,但总之美和完善、完美、和谐、秩序……等相联系。而数学本身体现出的简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异一,数学文化的存在价值
在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。
国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐
民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。
以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。
二,数学:一种思想方法
数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。毛泽东同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《毛泽东选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第八大行星——海王星的发现,就是由亚当斯(J. C. Adams)和勒维烈(U. J. Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。
数学作为推理工具的作用是巨大的。特别是对由于技术条件限
制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。
值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A. N. Whitehead )认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(L.E. Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭
义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。
数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。
三,数学:理性的艺术
通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,
音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。
艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。
艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。
(3 )简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。
(4 )象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情
感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。
艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。
在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维
的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材
四,数学韵味——数学的美
说到数学美,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠“哥德巴赫猜想”……
数学美可以分为形式美和内在美。
数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。
数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。数学中的严谨美,严谨美是数学独特的内在美,我们通常用“滴水不漏”来形容数学。它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等。总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。
美(有限美、神秘美等)会给学生以美的熏陶。数学所揭示的规律会加
深学生对美的理解,而学习数学的过程也会使学生体验数学作为人类智慧的结晶所洋溢出的精神美。
数学精神是一种理性精神,对完善人的精神品格有着不可估量的作用,主要体现在严谨求实、理智自率、直着求真、开拓创新等方面,通过解题实践既巩固了知识,培养了能力,同时也发展了坚持公正、终于科学、一丝不苟、不懈探索的优良品质,这都是造就人不断追求进取的品质所必备的前提。
怎样让信息技术融入数学课堂中的,并指出优点与不足
信息技术与数学教学整合,应结合数学本身的教学目标、内容、方法及信息技术自身的特点,要有效利用信息技术来做“数学实验”,而不仅仅当作演示功能。要把信息技术当作学生获取信息、探索问题、协作讨论、解决问题和建构知识的认知工具。现代教育思想指导下的数学课堂教学,应以学生发展为本,以思维训练为核心,以丰富的信息资源为基础,以信息技术为支撑,努力做到“化信息为知识、化知识为智慧、化智慧为素质。化静为动,激发学习兴趣.教学有法,但无定法,贵在有法,妙在得法。信息技术辅助教学就起到化静为动,动静结合,使静态的知识动态化;直观生动展示图形的变化,有效地激发学生探究新知识的兴趣,使教与学充满了生机,使学生学得主动,加深对知识的理解,并逐步了解知识的形成过程。
“射线、直线和角”是“空间与图形”中的概念课,就内容而言相当抽象和枯燥。课始电脑先显示线段,将线段一个端点闪动再去掉,向一端延长。请学生想象可以延长到哪里?用手笔划,还可以延长吗?通过课件演示向一端逐步延长,超出屏幕。并让学生闭上眼静静地想一想会怎样。再闪动线段的两个端点去掉向两端无限延长,得到一条直线等动态演示。这样让静止的线段、射线和直线“动”起来。整个课堂顿时活跃起来,唤醒学生有意注意,而且使学生的心一直被老师引导着。在学习了射线后,让学生举例生活中的射线,要将射线与生活联系起来,在生活中找射线,并不容易。通过电脑列举出手电筒发出的光、太阳光及城市灯塔的光线等,将一条条射线清晰地展现在学生面前,很神奇,变呆板为生动,大大调动了学生的学习兴趣,增强了数学的趣味性,激发了他们对数学的热爱.数学产生枯燥乏味、神秘难懂的印象的主要原因就是脱离实际,而信息技术正好能弥补了这一点。化难为易,突破学习难点
神奇的幻方在生活中有什么样的应用
一、幻方应用于哲理思想的研究。
在数学中,幻方蕴涵的哲理思想是最为丰富的。《易经》 是一本哲学书,它几乎影响了国内外的各种哲学思想。而易学家们通过多方面研究发现,易 学来源于河图洛书,而洛书就是三阶幻方。幻方的布局规律、构造原理蕴涵着一种概括天地 万物的生存结构,是说明宇宙产生和发展的数学模型。拙文《四阶完美幻方的易理思想》、 《五阶幻方与易数系统》,是对高阶幻方蕴含的哲理思想的进一步探讨,有兴趣的读者可 参阅《周易研究》1999年第1期和2000年第1期。
二、幻方应用于美术设计
幻方可大量应用于美术设计,西方建筑学家勃拉东发现幻方的对称性相当丰富,它采用幻方组成许多美丽的图案,他把图案中的那些方阵内的线条称为“魔线”,并应用于轻工业品、封面包装设计中,德国著名版画家A·度勒的作品《忧郁症》中,因有一个能指明制作年代的幻方而闻名于世,艺术美与理性美的和谐组合,往往成为流芳千古的佳作。关于“魔线”图,日本幻方专家阿部乐方也做过许多工作,我国河南安阳一位教师姬广忠,曾研究出各种魔线图,奉献给了中央工艺美术学院。北京丁宝训在《幻方专辑》 登载了17幅“魔线图”,都十分漂亮。幻方中数学布局十分对称均衡,又有丰富的变化,因而 将其数字按序联起来,可形成一幅幅奇特的“魔方阵构造图”,经彩色处理可获得十分漂亮的美术图案,这种图案在表现出多样的对称美的同时,又有幻方原理的理性规律,因此耐人寻味,堪称天斧之工。
三、幻方的美学价值。
数学是美的,幻方更美。幻方是数学按着一种规律布局成的一种体系 ,每个幻方不仅是一个智力成就,而且还是一个艺术佳品,都以整齐划一,均衡对称、和谐 统一的特性,迸发出耀人的数学美的光辉,具有很高的美学价值。在数学美学当中,把幻方 中的美学价值推为至上,由于数学中的各个内容均同数字有密切联系,因而幻方这种美的结 构均可渗透在各种数学知识当中,显示出多样的妙趣来,使我们在幻方的欣赏中了解数学知 识的许多奥妙。
四、幻方的智力开发功能。幻方由于比较简单,容易入门,很快能引起青少年的探讨兴趣。 可以说幻方在智力开发方面已产生十分重要的作用。挖掘中国数学史,我们便会看到,趣味 数学、计算工具、棋类游戏都与幻方有着内在的联系。在算法的历史上,先有九宫算,后有 太乙算、算盘、电子计算机,在游戏的发展史上,最先有重排九宫,后有象棋、围棋、华容 道游戏等。围棋盘是一个19阶方阵,象棋盘是一个八阶方阵(其将帅宫是一个三阶方阵), 它 们的走法原理均同幻方的布局原理相关。电脑上的“挖地雷”游戏,同九宫图密切相关。
近年来,我国幻方研究者应用幻方原理发明了许多智力开发游戏。辽宁刘志雄设计出一种 “集图双面幻方器”获铜牌奖,安徽王忠汉设计出一种有趣的“幻方棋”,湖南江亚晶设计 了“幻方系列数字游戏机”,笔者也设计成功“九宫妙算棋”,具有九大功能,20多种游戏 方式,是小学生数学运算训练的极好园地。
五、幻方在数学教学中的影响。
幻方在数学教学中, 具有提高学生学习兴趣、美化教材、启 迪思维的功能。幻方中数字的丰富变化,把数学教材中的各个内容联系起来,如方程幻方、 根式幻方、分数幻方、黑洞数幻方、积幻方、差幻方、平方幻方等,它们都可用在数学教学 当中,使数学内容产生魅力。图1是一个五阶完美幻方,当初一学生学习了有理数的加减运 算后,将这个数字图交给学生探讨,学生就会以强烈的兴趣进行各方面的学习活动的,他们 会发现形如“十、一、×、/”所含五数和均为0, 图1中带“△”的6数之和,一定等 于带“○”中的数,这种普遍的规律,在幻方图中处处呈现,学生在这种趣味活动中得到了有理数运算的训练。当今的《奥林匹克数学》书中,幻方是一个重要内容。
六、幻方对科学的启迪。
河图可看成是二阶幻方模型,洛书是三阶幻方,由于它们流传甚广 ,从古到今给人们许多科学的启迪。例如,爱因斯坦的《相对论》,运用了11个公式推算时 空相对增减元数,而河洛数对他很有启发。美籍华裔学者焦蔚芳,曾写有洛书矩阵、洛书几 何、洛书空间方面的书,对数学的发展起了促进的作用。河南傅熙如运用洛书研究哥德巴赫 猜想。我们知道电脑的产生基于自动控制理论,而美国自动控制论的发明人是通过研究中国 的“三三迷宫图”(三阶幻方的联线图)突发奇想,做出一系列控制理论的。从这里的资料可 看出,现在风靡世界的电脑,挖根寻源竟然跑到了幻方领域里去了。幻方因具有一种自然的 属性,虽是数字关系,但往往抽象概括性特强,当人们反复深思以后,就有可能对某个科学 理论激发出灵感来,从而推动其发展。在中国的传统文化中,我们能够看到洛书运用于军事 、中医、天文、气象、气功等领域的大量资料,说明幻方与各种学科的密切关系是不可忽视 的。
七、幻方应用于科学技术之中。
幻方已应用于“建路”、“爵当曲线”、“七座桥”等的位 置解析学及组合解析学中。幻方引出了拉普拉斯的导引系数和哥斯定理、格里定理、斯笃克 定理,还引出了普生、布鲁汀两氏的电子方程式。幻方还引出了桑南的自动控制论,从而促 成了电子计算机的诞生,电脑有三个来源,即二进制(八卦)、算盘和幻方。电子科学已把幻 方的排列路线看成是一理想的电子回路网图形,我们从台湾黎凯旋的《易数浅谈》中可以看 到,从日本学习飞机知识的台湾驾驶员,第一堂课上的就是幻方知识课,因为幻方的构造原 理与飞机上的电子回路设置密切相关。台湾电机专家吴隆生创造了64阶方阵仪可用于计算 机 、测量仪、通讯交换仪以及水电、火力、航空等的管制系统,已获得专利。海上漂浮建筑, 首先要解决的问题,就是要将建筑面分割成方阵格,每格的建筑重量的确定,需要象构造幻 方一样巧妙布局,因为只要各线各方向上的重量处处均衡才不致于倾斜。陕西省政协田健先 生写成一书,正在应用幻方研究中医理论,他从幻方的数字结构研究人体病因的数字特征, 以及中药的配置。他的研究工作引起了许多医易学家的关注。笔者应用十阶幻方的构造原理 研究“505神功元气袋”的中医理论,取得了一定的成果。四川刘辑熙曾为玩具厂、手帕厂 、制球厂、制伞厂、瓷厂设计了幻方文化产品,江苏许仲义有“幻方地毯”的设计。北京高 学峰有“幻方布”及“幻阵治病”的多项专利。
八、幻方在前沿科学中的作用。
这里想着重介绍一下,北方工业大学副校长,博士生导师齐 东 旭教授的研究成果,他的书《分形及其计算机生成》中,其中有一节“矩阵的kronecker乘 积与幻方”,论述了幻方已从被认为仅仅是“奇怪的现象”而逐渐开发了它的应用。如果将 m阶幻方A、n阶幻方B作为矩阵,那么Kronecker乘积A?B也是一个幻方。如果在计算机屏 幕上设定m×n个正方形,每个正方形的灰度依序对应m×n矩阵A的元素数值,对应于aij的方块,每分割它为P×q个小正方形,按aij*B的数值对它着色,这一过程继续下 去,可以想象,由幻方得到的无穷嵌套的结构具有自相似性(外观的或内在的),可看作是一 种全息对应结构。因幻方是一种特殊的数值矩阵,齐东旭教授发现,以幻方为控制网数据矩阵而生成的Bezier -Bernstein曲面,具有单向积分不变的特性,而其他熟知的逼近方式,如B样条插值或磨光 、lagrange插值等,皆不具备这一性质。
齐东旭教授与他的博士研究生丁玮合写文章《数字图像变换及信息隐藏与伪装技术》发表在 计算机学报上。本文提出“按幻方的图像置乱变换”的技术,它可以将需保密的图像置乱后 ,再按幻方的原理复原,这种置乱变换还可以进行多次。笔者认为幻方的分类、计数及构造 程序和变换,均可用在信息隐藏技术中,应用前景将十分广阔。
笔者近来阅读了计算机网络系统,网络拓朴结构共有五种,它们各有优缺点,但当我们思考 五阶完美幻方的结构后,五种网络结构可融为一体,有可能成为最完美的网络体系结构,而 且它有些象我们人体中的“五行体系”(中医名词)。山东吴硕辛的α (q, A)理论 ,与电脑的基 本原理十分接近,这套从幻方中派生的理论,必定会在电脑中找到应用的前景的。甘肃黄均 迪应用二进制理论研究幻方,它将幻方分解成若干幅图块,这些图块都是由黑白两色构成, 并具有和谐均衡性,这些黑白图块肯定可以用在电脑技术中去,希望大家去研究开发。
随着电子计算机的进一步发展,幻方在人功智能、图论、对策论、实验设计、工艺 美术、电 子回路原理、位置解析学等方面有着更加广泛的应用。我们可以这样说,幻方在古老的过去 ,对人类的文明做出了重大的贡献,而在信息时代的今天,它也必将有一个广阔的应用前景 。